
Design, Benchmark and
Determine the Performance of a

Low Cost 3D Printed 6 Degrees of
Freedom (DOF) Robotic Arm

A Thesis
Submitted in partial fulfilment of the requirements

for the award of the degree

Bachelor of Engineering (Mechatronics)

By

Brock Cooper
SID:5791340

Supervisor: Dr Prashan Premaratne

School of Mechanical, Materials,
Mechatronic and Biomedical Engineering

Northfields Ave, Wollongong NSW 2522

May 22, 2022

Abstract
This thesis explores the development of a 3D printed 6 DOF robotic arm (BCR1),

including designing a hardware controller alongside integrating an open-source me-
dian controller Robot Operating System.

The project investigates keeping the robotic arm low-cost using readily off the
shelf components and rapid prototyping manufacturing techniques, Whilst keeping
the design compact and similar resemblance to existing industrial robotic arms. The
design process used was broken down into three key areas; the arm design, hard-
ware control box (motors, drivers, microcontroller) and software control integration
(Robot Operating System).

The BCR1 was developed to demonstrate the feasibility of a low-cost 3D printed
robotic arm using a repeatability benchmark analysis, using a custom control pro-
gram written to travel through a series of trajectory positions repeated for 30 cycles
for each of the x, y and z-axis.

The most repeatable axis on the arm was determined to be the x-axis with
repeatability within 1.136mm. Through the benchmark analysis, the total repeata-
bility of the arm is approximately ±5.488mm.

The BCR1 constructed from open-source hardware and software has kept future
development open for new possibilities for improvements.

i

Acknowledgements
Firstly I would like to acknowledge my supervisor Dr Prashan Premaratne for

whom this project wouldn’t exist if it weren’t for him constantly encouraging me to
strive and do my best to achieve the highest results. I now find myself very passionate
about learning new ways of integrating and controlling robotic arms whilst finding
applications that they could be applied.

I want to thank my parents for supporting me throughout my life so far, especially
the last five and a half years of my studies, without them, I wouldn’t be who I am
today.

To my brother (Chad), I want to thank you for always supporting me and
encouraging me. He grounded me and always helped me reflect on the importance
of my studies.

To my girlfriend (Hannah), thank you for your patience throughout this long
journey and for helping me stay positive and achieve my goals.

To one of my best friends Ben Van Magill, who I look up to as a mentor. He has
always inspired me to strive and encouraged me to learn new things that I wouldn’t
have pushed myself to get where I am today.

ii

Statement of Originality
I, Brock Cooper, declare that this thesis, submitted as part of the requirements
for the award of Bachelor of Engineering, in the School of Mechanical, Materials,
Mechatronic and Biomedical Engineering, University of Wollongong, is wholly my
own work unless otherwise referenced or acknowledged. The document has not been
submitted for qualifications or assessment at any other academic institution.

As author of this thesis, I also hereby grant, subject to any prior confidentially
agreements, SECTE permission, to use, distribute, publish, exhibit, record, digitize
broadcast, reproduce and archive this work for the purposes of further research and
teaching.

(strike out that which does not apply)
This thesis;

IS
IS NOT

subject to a prior confidentially agreement.

Brock Cooper Dr Prashan Premaratne
SID: 5791340

iii

List of Figures

2.1 Example ROS Network Configuration 4
2.2 Kinematic Representation . 5
2.3 RViz Simulator . 6
2.4 Catkin Workspace Folder Structure 9
2.5 12V DC Encoder Motor . 10
2.6 Nemma 17 Stepper Motor and Coils Configuration 11
2.7 Servo Motor and PWM Position Control 11
2.8 ATmega2560 Pinout . 12
2.9 L298N Full H-Bridge Motor Driver 13
2.10 Mechanical Limit Switch on 3D Printer (x-axis) 14
2.11 Optical Sensor Endstop on 3D Printer (z-axis) 14
2.12 Hall Effect Sensor . 15
2.13 Robot Joints [27] . 15
2.14 Desktop FDM 3D Printing . 18
2.15 Pose Repeatability and ISO Cube . 19

3.1 Exisitng 4 DOF Robotic Arm . 21
3.2 Model Design . 22
3.3 Coordinate Frame . 23
3.4 Motor Types . 25
3.5 Motor Torque Diagram . 25
3.6 Link 1 Design . 26
3.7 Bearing Arrangement . 27
3.8 Motor Arrangement . 28
3.9 Coupling Designs . 28
3.10 Hall Effect Sensor Joint 2 . 29
3.11 Robot End Effector Position in Home Position 30
3.12 Control Box . 31
3.13 Arm Design (BCR1) to be ROS enabled 32
3.14 MoveIt Setup Assisstant . 32
3.15 Arm being controlled in RViz using inverse kinematics 33
3.16 ROS Active Nodes for Demo Controller using rqt Topics 34

iv

3.17 ROS Control Data Flow [16] . 35
3.18 ROS Active Nodes for BCR1 using rqt Topics 35
3.19 Example Experimental Apparatus . 36

4.1 Experimental Apparatus Setup . 38
4.2 Dial Indicator Measurements . 39
4.3 Repeatability in X-axis . 40
4.4 Repeatability in Y-axis . 41
4.5 Repeatability in Z-axis . 41
4.6 Combined Resultant Repeatability of BCR1 42
4.7 Repeatability in Each Plane 3D Space 42

C.1 Nodes and Topics Overview for Demo Controller 58
C.2 Nodes and Topics Overview for BCR1 59

H.1 Control Box Wiring Diagram . 81

v

List of Tables

2.1 PID Term Characteristics [29] . 16
2.2 Ziegler–Nichols Method [30] . 16

3.1 Denavit–Hartenberg Parameters for BCR1 23
3.2 Motor Specifications . 26

4.1 Standard Deviation of X,Y & Z Axis 41
4.2 BCR1 Costing . 43

D.1 List of ROS Distributions and Lifespan 60

vi

Nomenclature

Abbreviation Description
CAD Computer Aided Design
DOF Degrees of Freedom
FDM Fused Deposition Modelling (3D printing)
ROS Robot Operating System
URDF Unified Robotic Description Format
RViz 3D Visulization Tool for ROS
MoveIt Motion Planning Framework for ROS
XML-RPC Remote procedure call protocol XML passed via HTTP
CNC Computer Numerical Control
DC Direct Current
PWM Pulse-Width Modulation
TCP Tool Center Point
PID Proportional Integral Derivative
GUI Graphical User Interface
SS Steady State
CL Closed Loop
BCR1 3D Printed Robot Arm Name (Brock Cooper Robo 1)

vii

List of Changes
Section Statement of Changes Page Number

Thesis Title Changed the title to match new added objectives -
Abstract Altered to summarize what has been done i

Chapter 1 Added new objectives and reworded 1
Chapter 2 Addition of Figures Equations and Tables 3
Chapter 2 General Sentence Structure Editing 3
Chapter 2 Addition of extra research material 3
Chapter 3 Addition of new material robot design 18
Chapter 3 General editing and sentence structure 18
Chapter 3 Restructuring of subchapters 18
Chapter 4 Addition of results and experimental data 36
Chapter 5 Reworded conclusion for achieved objectives 42

viii

Contents

Abstract i

Acknowledgements ii

Statement of Originality iii

Nomenclature vii

List of Changes viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 Literature Review 3
2.1 Introduction . 3
2.2 Motion Planning and Software . 3

2.2.1 ROS Types . 4
2.2.2 MoveIt . 4
2.2.3 RViz . 6
2.2.4 Rosserial . 7
2.2.5 RQT Graphic User Interface 7
2.2.6 ROS Graph Level . 7
2.2.7 ROS Controllers . 7

2.2.7.1 Controllers . 8
2.2.7.2 Hardware Interfaces 8

2.2.8 Catkin Workspace . 8
2.3 Hardware . 9

2.3.1 Motors . 9
2.3.1.1 12V DC Encoder Geared Motor 9
2.3.1.2 Geared Stepper Motor 10
2.3.1.3 Servo Motor . 11

2.3.2 Control Board (Arduino ATmega 2560) 12

ix

2.3.3 L298 Motor Controller . 12
2.3.4 Endstops . 13

2.3.4.1 Mechancial . 13
2.3.4.2 Optical . 14
2.3.4.3 Hall Effect . 14

2.4 Types of Robotic Joints . 15
2.4.0.1 Prismatic . 15
2.4.0.2 Revolute . 15

2.5 PID Controller . 15
2.6 Rapid Prototyping - Manufacturing 17
2.7 Repeatability Testing . 18

2.7.1 Pose Repeatability . 19

3 Design and Experimental Setup 20
3.1 Introduction . 20
3.2 Realisation of Robot Arm Design . 20

3.2.1 Robot Arm Design (BCR1) 21
3.2.2 BCR1 Kinematics . 22
3.2.3 Motor Selection Criteria . 24

3.3 Link Design . 26
3.3.1 Bearing Arrangement . 27
3.3.2 Motor Arrangement . 27
3.3.3 Coupling Design . 28
3.3.4 Homing Limit Sensors . 29
3.3.5 BCR1 Forward Kinematics Home Position 29

3.4 Hardware Control Box . 30
3.5 ROS Implementation . 31

3.5.1 URDF Robot MoveIt Package 31
3.5.2 Simulating in RViz . 33
3.5.3 ROS Hardware Interface . 34
3.5.4 Repeatability Testing Design 35

4 Results, Analysis and Evaluation 38
4.1 Experimental Setup . 38
4.2 Repeatability Results . 40

4.2.1 Repeatability Analysis . 41
4.3 Costing . 43

5 Discussion and Conclusion 44
5.1 Key Findings . 44

x

5.2 Arm Design . 45
5.3 Conclusion . 45

6 Future Work and Recommendations 46
6.1 BCR1 improvements . 46
6.2 Software Development . 46
6.3 Integration Into Applications . 47

References 48

A Original Project Specifications 52

B Logbook Summary Sheet 57

C ROS Flowchart 58

D ROS Distributions 60

E MATLAB Code 61
E.1 BCR1 Forward Kinematics . 61
E.2 BCR1 Repeatability Point Cloud Plot 62

F Hardware Code 64
F.1 ROS Hardware Interface . 64

F.1.1 bcr1_hw_interface.cpp . 64
F.1.2 bcr1_hw_main.cpp . 65
F.1.3 bcr1_hw_interface.h . 67

F.2 Arduino Code . 68
F.2.1 Main Program . 68
F.2.2 Header Files . 72

F.2.2.1 armCmd.h . 72
F.2.2.2 bcr1Telemetry.h . 73

F.2.3 Python MoveIt Commander 74

G CAD Drawings 77

H Wiring Schematic 81

xi

CHAPTER 1
Introduction

Robots are expanding rapidly in the range of applications they are being applied
towards, from remote exploration to agriculture, search and rescue, and assembly
lines. Robotic manipulators are becoming more widely used in aiding in real-world
activities. Therefore, it is essential to use a benchmark that provides dual purpose
for developers to improve their design whilst allowing the end-user to determine
the appropriate armature for the desired application[1]. Robotic arms have been
applied to industrial applications for quite some time now. The first industrial
arm introduced by UNIMATE in 1961 has evolved into the robotic arm known as
the PUMA arm [2]. Although technology advancements have progressed with new,
more accessible, readily available manufacturing techniques, it has opened up the
possibilities for consumer-based designs and desktop robotic arm applications at a
more affordable price.

1.1 Motivation

The primary motivation behind the project is to design a low-cost 6 DOF robotic
arm that has been inspired by an existing 4 DOF 3D printed robotic arm, improving
and expanding the capabilities of the current design reflected in the new robotic arm.
The robotic arm will also provide data that can be used to determine the new design’s
performance through a benchmarking methodology, which could evaluate best-suited
tasks and environments. This will open up the opportunity for future development
by analysing potential flaws that the new design may have. The project will use all
open-source hardware and software, expanding the opportunity for future research
by using open-source hardware. This will allow the integration of new sensors that
could enhance the arm’s functionality. Setting up a control interface and having a
ground basis designed that could be used and applied to new designs in the future
with the ROS integration more efficient and less time-consuming.

1

1.2 Objectives

This report aims to develop a new low-cost 3D printed robotic arm by inspiring
an existing design constructed with a mix of 3 motors: a servo motor, stepper
motor, and DC encoder motors. Achieving these results in a limited time will
require the project to be broken down into sub-components, with quite a significant
focus on applying a suitable control method that can manipulate multiple joints
simultaneously. The controller can then carry out a set of specific measurement tasks
to obtain data on the particular arm which could improve the design. Benchmarking
criteria for robotic arms are in-depth and have numerous test parameters that
demonstrate the arms’ capabilities and operational functionality. Due to the limited
time on this research project with various aspects, only one parameter will be
selected to focus on in detail.

2

CHAPTER 2
Literature Review
2.1 Introduction

This chapter breaks down the project into three main sections: the software and
control theory, the hardware used and required, and research into existing testing
methodologies. The information acquired through research from credible resources
will aid in the successful implementation of the design to gather valuable data that
can be critically synthesised. Due to the nature of the software, ROS is quite
an in-depth and steep learning curve. The main focus of this chapter will be to
develop an understanding of the functionality of ROS (open-source Robot Operating
System).

2.2 Motion Planning and Software

ROS isn’t a typical operating system yet is a flexible framework, providing a
communication layer that allows seamless communication between a cluster/network
of machines above a host machine. It offers a collection of libraries, tools and
conventions for simplifying complex tasks [3].

ROS can be summarized as an operating system to achieve these main set criteria
being:

– Peer-to-peer
– Tools-based
– Multi-lingual
– Thin
– Free and Open-Source

A peer-to-peer network enables the robot to have on-board machines that act
as slave devices to receive data processed from off-board machines with higher
processing power. This may be processing data such as image or speech recognition.
The data sends from a host machine through a wireless LAN network. There can

3

be multiple hosts and slave devices that would be connected via ethernet to each
other, as seen in Figure 2.1.

Figure 2.1: Example ROS Network Configuration [4]

ROS has been developed for multi-lingual use, meaning that it can support
multiple coding languages such as C++, Python, Octave and LISP [4, 5]. With
ROS designed as a messaging layer with configuration files stored and transferred
as the XML-RPC, files are stored as an XML file, which is a markup language that
is then transmitted using the HTTP protocol [6].

The operating system is designed to be tool-based and thin so that the system
is built with smaller components rather than a monolithic development approach.
While keeping a narrow approach, ROS uses code from various open-source projects
such as simulators, drivers, navigation systems, vision algorithms, and many more.
The thin nature of the program allows for keeping libraries and small executables
separate, which makes it easier for testing. The open-source code for ROS has
allowed for development, and debugging is available on GitHub [4].

2.2.1 ROS Types

The current version of ROS runs only on Unix-based platforms and is being
tested primarily on Ubuntu and Mac OS X operating systems. There is potential
for ROS to be installed on windows, but it will require Windows 10 IoT Enterprise
and hasn’t been thoroughly tested. Due to various Unix-based platforms, ROS has
different versions called distributions. This is a set of packages designed for different
versions of Linux, the current and previous versions can be seen in Table D.1 which
can be seen to have a release date and end of life (EOL) date [7].

2.2.2 MoveIt

MoveIt is a motion planning software package that runs on top of ROS and is
specifically designed to manipulate robot arms by calculating the necessary trajecto-
ries (this is the path followed by the end effector to a specific location). This software

4

utilises ROS messages and some common tools, specifically the robot visualiser RViz,
and URDF robot format. This package implements complex previously developed
algorithms that allow robots to calculate inverse kinematics, and forwards kinematics
which makes for easy trajectory planning [8]. Forward kinematics determines the
position and orientation of the tooltip once the parameters for each joint have been
established. The equation for determining forward kinematics is seen in Equation
2.1 [9].

T k
k−1 =

cos(θk) −cos(αk) ∗ sin(θk) sin(αk) ∗ sin(θk) ak ∗ cos(θk)
sin(θk) cos(αk) ∗ cos(θk) −sin(αk) ∗ cos(θk) ak ∗ sin(θk)

0 sin(αk) cos(αk) dk

0 0 0 1

 (2.1)

Where:

– k Kinematic parameter for a specific joint
– θk Rotational angle for a joint about the z-axis
– αk Rotational angle for the joint about the x-axis
– dk Length translated along the z-axis
– ak Length translated along the x-axis

Figure 2.2: Kinematic Representation

A representation of forward kinematics and inverse can be seen in Figure 2.2
where joint space can be used to calculate cartesian space, using the joints being
q1-q6 as the input. On the other hand, cartesian space can be converted into joint
space, with multiple solutions depending on the position and orientation of the tool
as the input.

5

To calculate the final tooltip position and orientation, it is the relation between
the tool and base; by using the calculated relationship seen in Equation 2.1 the
tool position can be determined by multiplying all the kinematic matrices seen in
Equation 2.2.

T tool
base = T 1

0 ∗ T 2
1 ∗ T 3

2 ...T n
n−1 =

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

 =

r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

 (2.2)

2.2.3 RViz

RViz is a 3D visualisation simulation environment that allows developers/users
to easily view the robot and see and how it’s functioning in the environment in
real-time, allowing for easier debugging, especially for complex quaternions and
coordinate frames. RViz also shows the current arm position and configuration on
a virtual model in the workspace, which can display live the position of the robot
by using the ROS topics that publish sensor data. This can be seen in Figure 2.3
[10, 11].

Figure 2.3: RViz simulator, sequence images (1-12)A display’s the plan and execu-
tion path of the arm in RViz where images (1-12)B display’s the current physical
state of the robot corresponding to the current position in RViz [10]

6

2.2.4 Rosserial

The rosserial package/library wraps serialised ROS messages and multiplexing
multiple topics to send over a character device through a serial port or a network
socket. An Arduino C++ library for Ardunio is used to receive this data in the
correct formats being a Float64, String or Arrays, which can then control real-world
interfaces through a microcontroller such as an ATmega2560 [12].

2.2.5 RQT Graphic User Interface

ROS has a package called rqt that is a Qt-based framework for GUI development;
there are many GUI’s already readily available; these existing packages provide
tools such as graphing (Group: Introspection), editing parameters for controllers
(Group: Configuration), view topics and messages (Group: Topics), which can assist
in setting up or observing robot states [13, 14].

2.2.6 ROS Graph Level

ROS has multiple processes which are processing data together. The breakdown
of graph concepts are nodes, master node, messages, topics, roscore and rosout. The
nodes are executable files that ROS uses to communicate with other nodes. Messages
are a datatype used for publishing and subscribing data to a specific topic. Topics
used are for nodes to publish and send messages/data to a topic or subscribe and
receive data from a topic. The master node helps other nodes locate each other,
which initiates with the roscore command; this starts the master node. The last
main parameter is rosout, which enables a console log reporting mechanism [15].

2.2.7 ROS Controllers

The two main focuses with ROS control is the controllers that work in con-
junction with the hardware interfaces, this allows the simulation environment to
communicate with the physical hardware being the robot motors, actuators or other
devices [16].

7

2.2.7.1 Controllers

A list of available ROS controllers:

– joint_state_controller
– position_controllers
– velocity_controllers
– effort_controllers
– joint_trajectory_controllers

2.2.7.2 Hardware Interfaces

A list of available ROS Hardware Interfaces:

– Joint Command Interface
– Effort Joint Interface
– Velocity Joint Interface
– Position Joint Interface

– Joint State Interfaces
– Actuator State Interfaces

2.2.8 Catkin Workspace

ROS requires a catkin workspace which is a directory/folder structure that
creates or modifies existing catkin packages, this simplifies the build and instal-
lation process for ROS packages. A catkin package can be built as a standalone
project from the original ROS installation. In order to access and extend the ROS
development environment, setup files are used so resources can be found in the
installation folder; this is completed by running the bash script in the devel folder,
as seen in the folder structure in Figure 2.4. Each of the root directories within the
catkin_ws serves a different role; the Source (src) space contains the code for the
catkin packages, and each folder in the source space contains one or more catkin
packages; the space is unaffected by configuring, building or installing. Each of the
catkin packages has its own CMakeList.txt that CMake invokes during the building
process. The build space is where target files are placed before being built. The
devel is where the built targets are set before being installed; they are arranged in
the same structure as when they are installed in the install folder, which is where
the targets once built are installed [17].

8

system

catkin_ws

build

devel

setup.bash

logs

src

ROS Catkin Package

config

include

launch

msg

src

CMakeList.txt

package.xml

Figure 2.4: Catkin Workspace Folder Structure

2.3 Hardware

The hardware involved in this project will incorporate some of the existing
hardware types and adapt it to be ROS-enabled. Therefore an understanding will
need to be developed of the current components used on the arm to incorporate
them into the code structure to operate as intended.

2.3.1 Motors

The existing arm consists of 3 different motor types that would require a variety
of control methods. Understanding how each motor operates will be crucial in
calibrating the new arm to communicate and run with ROS.

2.3.1.1 12V DC Encoder Geared Motor

The majority of the joints are comprised of 12V DC encoder motors. These
motors allow for closed-loop positional control, enabling accurate control of the
shaft location of the motor. Encoders are devices designed to generate a square

9

wave signal; these signals are created using either mechanical, resistive or optical
means. The electric motors on the existing arm generate a pulse signal using an
optical sensor called hall effect sensors which are attached to the end of the motor’s
shaft before the gearbox, as seen in Figure 2.5. A hall effect sensor is a device that
can detect the presence or magnitude of a magnetic field. Encoders normally have
three types of modes, being X1, X2 and X4, and this defines the minimum angle that
the encoder can read. X1 is the base, then X2 means the resolution is double, and
the minimum angle reading is halved, whilst X4 mode is four times the resolution.
This can be seen using Equation 2.3 [18].

Figure 2.5: DC Worm Gear Motor 12V High Torque Reduction Gear Box with
Encoder [19]

minimum output shaft angle (radians) = 360π

xN ∗ 180 ∗ Gratio (2.3)

Where:

– x Encoder Mode
– N Number of Pulses generated per shaft resolution
– Gratio Gearbox Ratio

2.3.1.2 Geared Stepper Motor

The arm’s wrist is a geared Nemma 17 Stepper motor seen in Figure 2.6a, a
DC motor specifically designed to move in discrete stepping intervals. These are
constructed using multiple coils that are arranged into groups called phases being A,
Ā, B and B̄. These motors have high torques at low speeds with precise incremental
control, although they are not very efficient as they draw high currents when trying
to hold a position. The Nemma 17 stepper motor is common in various desktop CNC
machines and 3D printers. The standard Nemma 17 stepper is a 200 count step per
revolution, meaning that each step is 1.8°. Coil phases are essential in determining

10

the appropriate control method. A unipolar eight wire configuration stepper always
energises the phases the same. In contrast, a Bipolar configuration uses four wires
that require a H-bridge driver to reverse the current flow in the phases that alternate
respectively. This can be seen in Figure 2.6b [20].

(a) (b)

Figure 2.6: Nemma 17 Stepper Motor and Coils Configuration [20]

2.3.1.3 Servo Motor

Gripper control is actuated on the arm using a servo motor, as seen in Figure
2.7a, which comprises a DC motor and potentiometer integrated with a control
circuit. The motor is connected to a series of gears that allow higher torque on
the output shaft. The potentiometer’s resistance changes when the motor rotates,
allowing the control circuit to regulate the required directional movement. Once the
servo actuator has moved to the desired location, the power supplied to the motor
is stopped (although if an acting force were to be applied, the motor would provide
power to hold its current position). A servo motor can usually rotate 90 degrees on
either side of its neutral position, which allows for a total rotational range of 180°.
The min pules will rotate the servo towards 0° where the max pulse will turn the
arm towards 180° as seen in Figure 2.7b [21].

(a) (b)

Figure 2.7: Servo Motor and PWM Position Control [21]

11

2.3.2 Control Board (Arduino ATmega 2560)

When it comes to controlling the physical hardware of the robotic arm, a afford-
able yet effective choice is the Arduino ATmega 2560, as seen in Figure 2.8. With
the development of electronics over the years, microcontrollers have been essential in
controlling real-world physical hardware, from household appliances to cars, robots
and numerous other devices or equipment. Intel Corporation developed the first
microcontroller in 1971, which was called the i4004, a 4-bit microcontroller [22].

The ATmega2560 is a suitable choice for the robotic arm as it has a large amount
of required digital and analogue input and output pins necessary for controlling all
the motors. The board has 86 pins, with 72 being digital IO (D0-D53), 16 analog
pins (A0-A15) that allow up to 10-bit resolution with the analog to digital conversion
and 15 of the digital IO capable of generating an 8-bit PWM signal.

Figure 2.8: ATmega2560 Pinout [23]

2.3.3 L298 Motor Controller

A suitable motor controller that is diverse enough to control 12V DC motors
and stepper motors is the L298N, as seen in Figure 2.9. This full H-bridge driver
allows control of both speed and direction by using an input PWM signal. This
setup has two outputs that can be used to control two DC motors or handle one
bipolar stepper motor. As the PWM signal is modulated, it changes the output
voltage supplied to the motor, controlling the speed at which the motors rotate.

12

Figure 2.9: L298N Full H-Bridge Motor Driver [24]

The breakout board can be supplied with 5V or 12V, depending on the motor
being driven. With four inputs being ENA and ENB, this enables the motor when
pulled high with a jumper. Then the IN1, IN2 (Motor A) and IN3, IN4 (Motor B)
pins are used to control the motor’s direction and speed. If both pins are pulled
high or low for a motor, it will stop, or if a pin is pulled high and low, then the
motor spins in a specific direction [24].

2.3.4 Endstops

Endstops are a device used to help with positional control, which are used on
large industrial machines and CNC devices down to desktop machines. These devices
are placed so that when the machine moves to a particular position, the end-stop is
either pulled high or low, letting the machine know that it is at its limits or home
position. For the machine to understand it is at its designated location, a device is
required that triggers the signal needed when the machine has reached a particular
position. The three different typical end-stops found in CNC machines and robotic
arms are mechanical, optical and hall effect.

2.3.4.1 Mechancial

Mechanical end-stops are the simplest and most commonly found end-stops.
These end-stops are physical switches with a lever attached that pivots and triggers
a physical button, as seen in Figure 2.10. They come in a variety of sizes and
require very little force to trigger them, meaning the machine can trigger them
without crashing into the limits of the machine. The typical wiring of a mechanical

13

switch only requires two wires. When the switch is closed, the contact will be open
or closed depending on if the switch is normally open or closed [25].

Figure 2.10: Mechanical Limit Switch on 3D Printer (x-axis)

2.3.4.2 Optical

Optical sensors are a device that uses a photo-interrupter in a U-shaped config-
uration, as seen in Figure 2.11a. A beam of infrared light is emitted from one side
of the sensor and received from an optical detector from the other side. This type of
end-stop is triggered when an object breaks the path of light of the sensor, evident in
Figure 2.11b. This sensor is helpful as there is no need for physical interaction with
the end-stop increasing the lifespan and decreasing any potential risk of components
breaking on the CNC machine or robotic arm [25].

(a) Sensor Open (b) Sensor Closed

Figure 2.11: Optical Sensor Endstop on 3D Printer (z-axis)

2.3.4.3 Hall Effect

A hall effect end-stop comprises two parts; a hall effect sensor connected to a
circuit seen in Figure 2.12. This allows it to interpret the signal by amplifying
the output generated called the “Hall Voltage”, which is a small change in voltage
induced by the presence of a magnetic field. Therefore, the second part required is

14

a magnet that needs to be mounted on the carriage or moving component to trigger
the sensor. The advantage of this system is similar to an optical sensor not requiring
any physical interaction to activate the sensor [25, 26].

Figure 2.12: Hall Effect Sensor [25]

2.4 Types of Robotic Joints

Two types of joints that are used in industrial robotic arms:

2.4.0.1 Prismatic

A prismatic, as seen in Figure 2.13a joint is a motion that provides a linear
sliding movement that only allows the joint to move in positional space, allowing
only the robot to move in the X, Y or Z axis.

2.4.0.2 Revolute

A revolute joint, as seen in Figure 2.13b a mechanism that can rotate around a
common point. This joint allows a robot to position itself in the X, Y or Z plane
while also controlling orientation Roll, Pitch or Yaw.

(a) Prismatic Joint (b) Revolute Joint

Figure 2.13: Robot Joints [27]

2.5 PID Controller

A PID controller is a controller designed and used in specific control applications
that can be used to regulate flow, pressure, temperature speed or other processes

15

that require a variable output. A PID controller is a feedback system used to control
variables with a stable, accurate output. In Equation 2.4 can be seen the velocity
transfer function of a DC motor that of which can be integrated to give the position
transfer function which is evident in Equation 2.5 where G(s) is was multiplies by
1
s

[28]. Transfer functions are important in applying to PID controllers as they take
specific variables from the motor specifications to derive a specific transfer function
for a DC motor.

G(s) = θ(s)
V (s) = Kτ

(L ∗ J)s2 + (B ∗ L + J ∗ R)s + (B ∗ R + Ka ∗ Kτ) (2.4)

F (s) = θ(s)
U(s) = Kτ

s((L ∗ J)s2 + (B ∗ L + J ∗ R)s + (B ∗ R + Ka ∗ Kτ)) (2.5)

A PID controller consists of three variables that can change how a system
responds to an input; these variables are known as the proportional, integral and
derivative. In Table 2.1 can be seen how the effect of changing each variable in the
system and the response it has on the output.

Table 2.1: PID Term Characteristics [29]

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Decrease
Kd Small Change Decrease Decrease No Change

PID controllers typically need to be tuned with the parameters in the Table 2.1.
This can be done in two typical ways being with an automatic tuning process where
a program/algorithm will tune a model or real time data of a system. Another
method is using the Ziegler–Nichols Method which is a manual tuning process that
has been developed for tuning PID controllers.

Table 2.2: Ziegler–Nichols Method [30]

Controller Kp Ti Td Ki Kd

P controller 0.5Ku 0 0 0 0
PI controller 0.45Ku 0.8Tu 0 0.54Ku/Tu 0

Classic PID controller 0.6Ku 0.5Tu 0.125Tu 1.2Ku/Tu 0.075Ku/Tu

16

Where:

– Ku Ultimate Gain
– Tu Oscillation Periods

In order to tune the PID loop for the ROS controller with the motors that will
be used for the new arm design, the Ziegler–Nichols Method approach will be taken
as the manufacturing doesn’t provide all the motor characteristics for the transfer
functions of the DC motors. The Ziegler–Nichols Method involves increasing the
gain Kp until the ultimate gain is achieved with stable oscillation. The period Tu

can be measured and applied to determine the approximate values for P,I, and D
terms using Table 2.2 that can be used in the ROS controller [30].

2.6 Rapid Prototyping - Manufacturing

Rapid prototyping is becoming a more popular way of development and manu-
facturing in industry, allowing people and companies to reduce lengthy production
times to create a working concept or final product in accelerated turnaround periods.
Most robotic arms use traditional manufacturing methods being machining, cast
or injection moulded parts/components. These methods use complex tool-path
generation with costly and lengthy turnaround periods, resulting in a very costly
end product.

3D printing technologies can be dated back to it’s construction in 1986, where the
first printing process was formed called the stereo-lithography machine (SLA) [31].
Furthermore, technological advancements brought the next form of 3D printing:
Selective Laser Sintering (SLS). Then finally, the development of the commonly
known and accessible 3D printing process is Fused Deposition Modelling (FDM)
machines. 3D printing is not only limited to plastics but can be metals such as
Titanium, Stainless Steel, Aluminium, etc.

The principles of 3D printing involve taking a 3D model in the form of an STL
or 3MF file, sliced into layers/cross-sections along the z-axis at a specified thickness.
The tool head then extrudes molten plastic that is fed through a nozzle following
a specified path in the generated GCODE file to build the model layer by layer,
allowing time for the previous layer to cool as seen in Figure 2.14b. The printer
that will be used for printing the components for the project is a custom designed
enclosed 3D printer that can be seen in Figure 2.14a

17

(a) 3D Printer Used for Project (b) 3D Printing Process [32]

Figure 2.14: Desktop FDM 3D Printing

2.7 Repeatability Testing

Due to the nature of robotic arms, several performance criteria can be focused
on when accessing and testing the performance of robotic arms. According to
ISO9283:1998(E) standards "Manipulating industrial robots – Performance criteria
and related test methods" there are 14 criterion that can be tested, these are as
follows [33]:

– pose accuracy and pose repeatability
– multi-directional pose accuracy variation
– distance accuracy and distance repeatability
– position stabilization time
– position overshoot
– drift of pose characteristics
– exchangeability
– path accuracy and path repeatability
– path accuracy on reorientation
– cornering deviations
– path velocity characteristics
– minimum posing time
– static compliance
– weaving deviations

18

One of the project’s primary focuses is benchmarking a low-cost 3D printed
robotic arm with a more complex control method. Due to many characteristics
involved when benchmarking a robotic arm and the limited time available for the
completion of the project, the main focus of this report will be determining the pose
repeatability of the new arm.

2.7.1 Pose Repeatability

Pose repeatability is the process of measuring set points located in the robot’s
working space, called its ISO cube. This is a cube where the arms TCP can move
about and most frequently operate within. The ISO cube should have an imaginary
inclined plane with at least five measurement points, as seen in Figure 2.15b. The
process involves measuring each position for a minimum of 30 cycles during the tool
moves between the five defined points. The test must be conducted at 100% of the
manufacturer’s specified velocity. It is optional to run further tests at 50% or 10%.
It can be seen in the barycenter, which is represented by the letter G in Figure 2.15a
is a proposed sphere where it is the mean value that displays the coordinates that
correspond to the mean values calculated from the experimental data [34].

Figure 2.15: Pose Repeatability and ISO Cube [34]

To calculate the pose repeatability using the standard deviation calculated from
the data collected through experimental results uses the Equation 2.6 where Pq is
the point measured within the ISO cube on the inclined plane.

RPP q = ±SP q = ±3
√√√√ 1

n − 1

n∑
j=1

(Pqj − P̄ q)2 (2.6)

19

CHAPTER 3
Design and Experimental Setup
3.1 Introduction

This section explores the concepts of developing a low-cost 3D printed robotic
arm that will be used to conduct an experimental analysis to determine the repeata-
bility of a 3D printed robotic arm. The project also aims to implement a suitable
control method that will be able to plan and solve complex inverse kinematics.
This will be required to undertake the benchmarking for the repeatability of the
3D printed ROS enabled arm. This section will be broken down into crucial skills
and techniques to carry out the experimental analysis. The chapter will also discuss
any design considerations taken into account to achieve the best results that can be
critically analysed.

3.2 Realisation of Robot Arm Design

The realisation and inspiration of the robot arm design came from an existing
design provided by my supervisor. This arm design was a 4 DOF arm as seen in
Figure 3.1 which consisted of one 12V DC motor, two 24V DC Encoded Motors
and one Nemma 17 stepper motor. After analysing this existing design provided
insight and inspiration to re-design a new arm and improve its current flaws and
weaknesses. One of the main issues with the arm was the base rotational joint that
positioned the robot’s end effector in the X and Y planes, having issues with slipping
with the current setup.

In addition, the design was limited to positional space and unable to have
the ability to satisfy the roll, pitch and yaw of the TCP. The project’s aim will
incorporate using ROS as a control interface, allowing for a more flexible design,
and taking full advantage of the complex inverse solver algorithms. Using three
different motors makes it more complicated to integrate the hardware with the
software. While the base joint not having an encoder makes it nearly impossible to
determine the angle of joint 1, using consistent motors with the ability to monitor
positions with encoders will be adapted in the re-design.

20

Another main issue with the existing arm was link 1 being held at an angle. This
couldn’t be adjusted. When a gripper was attached, it would be sitting at a fixed
angle and unable to approach the items to be picked up in a perpendicular motion.

Figure 3.1: Exisitng 4 DOF Robotic Arm

3.2.1 Robot Arm Design (BCR1)

As ROS can handle tasks solving complex inverse kinematics of robots consisting
of six or more joints, the robot model will consist of a minimum of six joints. A
typical six-axis industrial robotic arm consists of six revolute joints where joints 1-3
position the TCP in positional space, known as the robot elbow. Where joints 4-6
are used for tool orientation, known as the robot’s wrist. A model will be developed
and drawn using the software package SOLIDWORKS a CAD package developed
by Dassault Systèmes (a French software corporation) [35].

A model design was drawn as seen in Figure 3.2; this joint configuration was
based on existing industrial robot designs where joint 1 can position the TCP in
the X-Y plane and joints 2 & 3 can control the reach in the X, Y and Z axis. Then
joints 4-6 being the wrist of the robot that can handle the roll, pitch and yaw of the
end effector.

21

3.2.2 BCR1 Kinematics

Figure 3.2: Model Design

To understand the fundamentals of the design a coordinate frame is attached to
the robot model. A technique is followed to connect these reference frames called the
Denavit–Hartenberg (D-H) convention, a series of rules exploring how to orientate
the coordinate frames for each joint.

Steps are as follows:

1. Number joints starting from 1 to n, starting from base to tool
2. Assign coordinate frame to the base of the robot with the Z0 axis aligned with

the rotation of joint 1
3. Align Z-axis for each joint to be colinear with the joint rotation or translation;

right-hand grip rule determining positive rotation.
4. Select Xk to be orthogonal to Zk and Zk−1, if Zk and Zk−1 are colinear, Xk

should point away from Zk−1.
5. Y k is selected using the right-handed orthonormal rule.
6. Repeat steps for joints if k < n.

22

From this, the Robot DH parameters can be determined as seen in Table 3.1,
which will allow the calculation of the forward kinematics of the robot through the
use of Equation 2.1. This will display the end-effector position and orientation in
space, given the joint angles as the input.

Figure 3.3: Coordinate Frame

Table 3.1: Denavit–Hartenberg Parameters for BCR1

Axis θ d a α Home
1 q1 d1 0 π/2 0
2 q2 0 a1 0 π/2
3 q3 0 0 π/2 0
4 q4 d4 0 −π/2 0
5 q5 0 0 π/2 0
6 q6 d6 0 0 0

The MATLAB script in Appendix E can be used to calculate the general solution
for T 6

0 that can be used to derive the tool configuration vector. The tool configuration
vector can be solved through a numerical approach of an inverse kinematic solver.

23

This allows the tool position and orientation as an input, then outputting the
appropriate joint angles to satisfy the condition. Since there are multiple solutions
for a desired position and orientation of the TCP, a numerical solution will be used
instead. Through the aid of built-in libraries, the heavy lifting is conducted by
the MoveIt library. This library has built-in inverse kinematic solvers that take a
numerical approach and find multiple results.

3.2.3 Motor Selection Criteria

One of the main goals of the design consideration is to keep the arm low cost and
affordable. This narrows down the motor selection criteria and overall structure of
the arm design. To keep the design simplistic and reduce complexity in joint designs.
A low-cost DC motor will be the most viable option. After analysing the existing
arm, the motors used were dual shaft motors that supported either side of the joint,
linking two links together. This concept will reduce cost and weight in having to
add extra bearings for a single shaft motor. The motor size will determine the robot
link lengths. The motor seen in Figure 3.4a was selected as it has multiple gear
ratios with the same package size, allowing for the same design and can assign a
different gearbox depending on the torque required for each joint. Since there are
two collinear joints in the design, being joint 4 & 6 as a single shaft motor as evident
in Figure 3.4b with a bearing will be required. The specifications for gear reductions
with rated torques can be seen in Table 3.2.

After designing the arm and determining the link dimensions seen in Appendix
G using the specified motors in Figure 3.4 with the datasheets provided by the
manufacturer, the motor rated torques could be determined to select the appropriate
gear reduction. Joint 2 is the crucial joint in selecting the proper gear reduction to
have enough torque to lift the arm in the fully extended position, as seen in Figure
3.5. Using the general formula for torque being τ = Force∗distance, the Equation
3.1 can be derived for determining the torque at joint 2 where the arm is in the fully
extended position.

24

(a) 12V Dual Shaft DC En-
coded Motor

(b) 12V Single Shaft DC Encoded
Motor

Figure 3.4: Motor Types

Motor Mass (kg) Force (N)
M3 0.1 0.981
M4 0.12 1.18
M5 0.1 0.981
M6 0.12 1.18

Motor Positions are as follows: d1 = 0.178m, d2 = 0.06m, d3 = 0.18m, d4 = 0.13m

τ M2 = d1 ∗ FM3 + d1+2 ∗ FM4+d1+2+3 ∗ FM5 + d1+2+3+4 ∗ FM6

τ M2 = 0.178 ∗ (0.981) + (0.178 + 0.06)∗1.18 + (0.178 + 0.06 + 0.18) ∗ 0.981
+(0.178 + 0.06+0.18 + 0.13) ∗ 1.18
⇒ τ M2 = 1.51N.m

(3.1)

Figure 3.5: Motor Torque Diagram

The max torque by joint 2 was calculated to be 1.51N.m meaning that looking

25

at the motor specifications in Table 3.2 that the motor with a reduction of 600:1
would be a suitable fit for joint 2, as it is roughly half of the rated stall torque.
Seeing that joint 2 will have a maximum speed of 7.5 rpm and considering the linear
interpolation of joint movements of a robotic arm, a 600:1 gear reduction would be
used for all the other joints.

Table 3.2: Motor Specifications

Reduction Ratio Rated Voltage (V) Speed (rpm) Current (A) Stall Torque (N.m)
1000 12 4 0.6 4.41
600 12 7.5 0.6 2.94
340 12 15 0.6 1.77
260 12 18 0.6 1.27
200 12 22 0.6 0.98
150 12 30 0.6 0.74
90 12 51 0.6 0.20
65 12 70 0.6 0.16
40 12 120 0.6 0.09

3.3 Link Design

To keep the BCR1 design relatively simple each link was based on a standard
link and modified/resized. Each link was based off link two, where there are six
main pieces. The motor housing comprises of four elements to encase the motor
and allow it to be easily mounted within. The linking arms connect to the motor
housing that extends for the following link to attach to, as seen in Figure 3.6b. The
link assembled is seen in Figure 3.6a. The link was held together with the same bolt
size being M3x6 mm and the required heat inserts. Selecting the dual shaft motors,
reduces the cost of not requiring bearings for joints 2, 3, and 4, as the joints could
be fully constrained on either side.

(a) Link 2 Assembled View (b) Link 2 Exploded View

Figure 3.6: Link 1 Design

26

3.3.1 Bearing Arrangement

Due to having concentric joints for joints 1 & 4, the joints cannot be fully
constrained, and the arm will apply a perpendicular torque from the weight of the
links. Therefore, an added bearing was required for each concentric joint with an
added coupling to constrain this joint.

The motor can constrain axial load. This is the force applied parallel with the
motor.

A radial ball bearing was selected to handle the radial loads. The bearing
arrangements is seen in Figure 3.7, whilst the bearing coupling that linked the two
links together are seen in 3.9b.

(a) Joint 1 Bearing (b) Joint 4 Bearing

Figure 3.7: Bearing Arrangement

3.3.2 Motor Arrangement

Since the design aim was to keep the BCR1 low cost, the motor arrangement was
straightforward as there were no belts, pullies or geared shafts, meaning that each
link was going to be attached using the previous motor. Thus keeping the motor’s
close to one another was the most crucial consideration to keep the mass mostly
over the robot’s base. In doing so, the joint 3 motor was arranged, so the motor was
hanging off the back end of the arm as seen in Figure 3.8 in order to keep the mass
as far back as possible.

27

Figure 3.8: Motor Arrangement

3.3.3 Coupling Design

A coupling design was created to reduce costs that could be entirely 3D printed.
Brass heat inserts were added for structural integrity, allowing the bolts to grab
correctly, attaching the motors to each link with minimal to no backlash. There
were two designed couplings required for two different motor types, the first being
the dual shaft coupling as evident in Figure 3.9a and the other being for the single
axle bearing coupling seen in Figure 3.9b.

(a) Dual Shaft Motor Coupling De-
sign

(b) Single Shaft Motor Coupling De-
sign

Figure 3.9: Coupling Designs

28

3.3.4 Homing Limit Sensors

The chosen end-stop used to home the robot and determine the joint positions
when rebooting were hall effect sensors, as they are easy to align and don’t require
any physical contact to trigger them. The hall effect sensor modules were mounted
to the outside of a link, and a magnet was then embedded in the previous link as
seen in Figure 3.10a. The sensor is triggered as the link rotates backwards until the
hall effect sensor is in range of the magnet, evident in Figure 3.10b.

(a) Hall Effect Sensor Mounting (b) Hall Effect Sensor Home

Figure 3.10: Hall Effect Sensor Joint 2

3.3.5 BCR1 Forward Kinematics Home Position

The rotation matricies in Equation 3.2 can be used to input the joint angles that
are multiplied to determine the tool position and orientation in relation to the base.

T 1
0 =

C1 −C(π

2)S1 S(π
2)S1 0

S1 C(π
2)C1 −S(π

2)C1 0
0 S(π

2) C(π
2) d1

0 0 0 1

 T 2
1 =

C(π

2 2) −S(π
2 2) 0 a2C(π

2 2)
S(π

2 2) C(π
2 2) 0 a2S(π

2 2)
0 0 1 0
0 0 0 1

T 3
2 =

C3 −C(π

2)S3 S(π
2)S3 0

S3 C(π
2)C3 −S(π

2)C3 0
0 S(π

2) C(π
2) 0

0 0 0 1

 T 4
3 =

C4 −C(π

2)S4 −S π
2)S4 0

S4 C(π
2)C4 S(π

2)C4 0
0 −S(π

2) C(π
2) d4

0 0 0 1

T 5
4 =

C5 −C(π

2)S5 S(π
2)S5 0

S5 C(π
2)C5 −S(π

2)C5 0
0 S(π

2) C(π
2) 0

0 0 0 1

 T 6
5 =

C6 −S6 0 0
S6 C6 0 0
0 0 1 d6
0 0 0 1

(3.2)

Using Equation 2.2 an example case for determining the TCP position in the
robot home position can be calculated using the values for the joint angles of 0 and
link lengths from Appendix G. Using the MATLAB script attached in Appendix E
to perform the matrix multiplication to calculate the position and orientation of the
end effector. This can be verified through the CAD model as seen in Figure 3.11

29

showing the correct X, Y and Z coordinates as well as the tool orientation as seen
in Equation 3.3.

T tool
base = T 1

0 ∗ T 2
1 ∗ T 3

2 ∗ T 4
3 ∗ T 5

4 ∗ T 6
5 =

0 0 1 318.1
0 −1 0 0
1 0 0 319.5
0 0 0 1

 (3.3)

Figure 3.11: Robot End Effector Position in Home Position

3.4 Hardware Control Box

The hardware control acts for two purposes, the first use case is for housing all
the electrical components. These are the power supply, motor controllers, and micro-
controller (ATmega2560) mounted on nylon standoffs to ensure complete electrical
isolation from the aluminium housing. The other primary purpose of the control
box is to act as a mounting point for the 3D printed robotic arm (BCR1) which
allows it to be firmly mounted using thumbscrews. The added weight allows the
arm to reach fully extended with enough mass at the base of the arm to prevent it
from falling over. The overall wiring schematic is seen in Figure H.1, through the
use of six 9 Way D-SUB connectors seen in Figure 3.12a, it allowed for the motors
to be connected to the housing whilst allowing the arm to be removed at any stage
easily. This flexible design allows for the control box to possibly be used for different
types of robotic arms or a new, improved design.

30

(a) Control Box Back (b) Control Box Wiring

Figure 3.12: Control Box

3.5 ROS Implementation

Since ROS is mainly developed and tested on Linux, this was easy to select the
newest distribution of Linux, being Ubuntu 20.04 Focal Fossa. There were options
to go with a virtual machine that allows a user to emulate an operating system on
top of an existing system. Due to having access to a desktop, installing another hard
drive, and setting up Linux with a dual boot system was the most viable solution
to avoid any driver errors when communicating via serial that could pose an issue
when using an emulation/virtual machine.

3.5.1 URDF Robot MoveIt Package

One of the most crucial elements is developing the URDF file required for ROS
to understand the robot configuration and display it in the RViz workspace. An
open-source GitHub project maintained by Brawner [36] has been developed as a
SolidWorks plugin that can be used to export assemblies of robotic arms with the
required STL formats and descriptions. Using the photo as seen in Figure 3.13a
and the SolidWorks model as seen in Figure 3.13b. This saves having to write the
description formats manually.

31

(a) 3D Printed Robotic Arm - BCR1 (b) URDF export of 3D Printed Arm

Figure 3.13: Arm Design (BCR1) to be ROS enabled

MoveIt setup assistant can then read the files necessary to finish off the configu-
ration process required for ROS, as seen in Figure 3.14. The MoveIt setup assistant
allows importing the previously exported URDF package created in SolidWorks and
enables the user to define all the joints. A self-collision matrix is generated within
the software to allow the robot to determine which joints can collide during this
process. Default robot poses can be added with a choice of inverse kinematic solver
along with the position, velocity and acceleration controller required to generate
planned robot trajectory paths.

Figure 3.14: MoveIt Setup Assisstant

The MoveIt setup assistant generates the necessary files into a ROS package that
can be built in the catkin workspace. A demo launch file can be run to test the robot
configuration with the fake controller manager.

32

3.5.2 Simulating in RViz

Once a package is created for the arm, the default launch file can be run with a
roscore node and RViz, allowing the robot to be loaded into the RViz visualiser. The
robot can be manipulated using the axis limiting motion in the specified axis, or the
end effector can be moved around using the blue ball at the end of the robot, as seen
in Figure 3.15a. The proposed trajectory is animated from the current position to
the target position highlighted in orange. To test the configuration of the arm a joint
state topic can be subscribed to, as seen in Figure 3.15b when the robot moves, the
joint angles are displayed live from the “move_group/fake_controller_joint_states”
which are outputted in radians. This default publisher runs when a robot isn’t
connected by default. Running this demo launch files ensures that the URDF is
reading correctly and there weren’t any issues when launching the robot after setting
up the robot using the MoveIt Setup Assistant. Once the model is checked, a
hardware interface controller will be integrated to work with the physical hardware
meaning a new launch file will be created to run the new desired nodes.

(a) Simulated 3D Printed Arm RViz (b) Subscriber Node Current Joint Angles

Figure 3.15: Arm being controlled in RViz using inverse kinematics

For the current working setup of the ROS application for the BCR1 arm, there
are three active nodes in the system, as seen in Figure 3.16. The "/robot_state_-
publisher" allows the system to publish the robot state to the “/tf ” topic, which
is a transformation library that enables the tracking of multiple coordinate frames
that are available to the whole system and allows RViz to take this as an input
and display the robot state in 3D. The “/move_group" has topics that are used for
the end-user to define specific target poses or joint states that additional written
packages can feed in. Whilst the "/move_group" allows the program to read in and
publish the joint conditions for a given URDF model. An overview of the entire

33

nodes and topics is seen in Figure C.1 where nodes are in oval shapes, and topics
are drawn in rectangles, which all stem from the master node in the middle.

Figure 3.16: ROS Active Nodes for Demo Controller using rqt Topics

3.5.3 ROS Hardware Interface

To interface one of the available ROS controllers, a hardware interface is re-
quired to send (hardware_interface::RobotHW::write) and receive (hardware_inter-
face::RobotHW::read) commands to and from the robot, being joints, sensors or
actuators. In Figure 3.17 is seen, the data flow process for ROS communication
between hardware and the simulation environment with the selected controller. To
implement this controller, a boilerplate which is a template for a simple simulation
interface designed and maintained for setting up a hardware interface for ROS
controllers was used [37]. The main control of DC motors with an Arduino with the
L298N dual full-bridge motor driver uses an analog write PWM signal from 0-255.

ROS has a controller for each ROS interface that links to a controller to commu-
nicate with the hardware_interface::RobotHWrobot, for this specific arm, a joint_-
trajectory_controller with an Effort Joint Hardware Interface will be used. The
joint_trajectory_controller will be using the effort_controller namespace, this con-
troller accepts a joint angle as an input and will output an effort based on the
position of the joint and how far the joint has to move, which is passed through a
PID loop. These values are then passed through the Effort Joint Hardware Interface.
The PID parameters can all be entered into controllers.yaml file in the hardware
control package, along with the maximum and minimum effort parameters being
0-255 can be inputted into the joint_limits.yaml from the moveit_config.

34

Figure 3.17: ROS Control Data Flow [16]

After setting up the hardware interface with a new custom launch file (bcr1_-
HW_main.launch) that is used to start the master node bcr1_hw_main and the
other executable nodes being, /move_group, /robot_state_publisher, /serial_node
as seen in Figure 3.18 these are the core nodes to communicate joint angles and
update the RViz simulation whilst being able to communicate with the hardware
through the rosserial node. The message names are seen above each linking ar-
row with the two main custom messages being the /arduino/bcr1Telemetry and
/arduino/armCmd these were written to send payload messages to and from the
robot, with /arduino/bcr1Telemetry sending the robot joint current angles and
/arduino/armCmd that sends the effort (PWM) signal required to move each joint.
An entire detailed overview of all the active ROS nodes, topics and messages can be
seen in Figure C.2.

Figure 3.18: ROS Active Nodes for BCR1 using rqt Topics

3.5.4 Repeatability Testing Design

The repeatability design will consist of using a dial indicator as seen in Figure
3.19a which is a measuring device that is typically used for measuring a variety of
precision engineering applications, such as straightness, levelness, shaft runout and

35

many more. The reason for choosing such a device for taking measurements for
testing the repeatability of the robotic arm is that it is relatively cost-effective and
easy to access such equipment.

(a) Analogue Dial Indicator (b) Digital Dial Indicator Apparatus [34]

Figure 3.19: Example Experimental Apparatus

Both the arm and dial indicator will need to be mounted on a flat plane/surface
with a ground base for taking all measurements. The arm will be able to move to
specific positions where the dial indicator will be mounted, as seen in the example
in Figure 3.19b. The arm will be able to approach the probe on the end of the dial
indicator, where measurement will be recorded, before the arm completes another
move to another position ensuring all joints move from their current state. The
arm will come back to take another measurement and undergo this process for a
minimum of 30 readings in each axis.

To control the arm and automate the process of taking multiple readings, a
control program was required to manipulate the arm into different positions nu-
merous times. Since ROS has many packages available, the MoveIt library has a
package called moveit_commander that interfaces with the move_group topic that
has a list of functions and definitions that can be written and used in Python or
C++. Originally the robot position and tool orientation is displayed as a coordinate
transformation and rotation matrix as seen in Equation 3.4. In order to use the
moveit commander and specify positions and tool orientation, the required input is
desired in quaternions (a mathematical notation used for representing orientations
and rotations of an element in three-dimensional space). Quaternions consist of four
components roll, pitch, yaw and W, a scalar defining the amount of rotation along
that axis as seen in Equation 3.5.

36

T tool
base =

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

 (3.4)

q =

qi

qj

qj

qk

 = qii + qjj + qkk + qr (3.5)

Where:

– r real component being W
– i, j, k imaginary components for Roll, Pitch and Yaw

From the rotation matrix T tool
base the basis for calculating quaternion are seen in

Equation 3.6

qr = 1
2
√

1 + T11 − T22 − T33

qi = 1
4qr

(T32 + T23)

qj = 1
4qr

(T13 + T31)

qk = 1
4qr

(T21 + T12)

(3.6)

In certain cases there are multiple ways to calculate q, although numerical
accuracy can be reduced by avoiding cases in which the denominator is close to
zero. Another mathematical representation are seen in Equation 3.7

qi = 1
2
√

1 + T11 − T22 − T33

qj = 1
4qi

(T12 + T21)

qk = 1
4qi

(T13 + T31)

qr = 1
4qi

(T32 + T23)

(3.7)

Due to the numerical inaccuracy of solving the orientations manually, a more
appropriate method was taken through the use of computational calculations since
the moveit_commander is compatible with python. Making light work for convert-
ing to quaternion form using the python module quaternion. The python code is
seen in Appendix F.2.3

37

CHAPTER 4
Results, Analysis and Evaluation

With all the available results and data, the chapter aims to analyse the per-
formance of the final BCR1 concerning the objectives and goals outlined at the
beginning of the project seen in Chapter 1. Overview of benchmarking results and
a breakdown of the overall cost of the BCR1 robotic arm.

4.1 Experimental Setup

The experimental setup design consisted of testing the repeatability of the arm
in the x, y and z-axis for 30 cycles in each. An example of the setup can be seen in
Figure 4.1 representing the test trajectory path where the arm would run through
30 times, testing the x-axis repeatability. This consisted of the arm starting in the
rest position evident in Figure 4.1a where the arm would then move to an approach
position Figure 4.1b in order to approach the dial indicator in a parallel path/motion
seen in Figure 4.1c. The arm was moved back to the arm rest position for testing on
all axis to ensure all the joints move through a range of motion to ensure the most
valid repeatability results of the BCR1.

(a) BCR1 Arm Rest (b) BCR1 Approach (c) BCR1 Probe

Figure 4.1: Experimental Apparatus Setup

The end effector plate would then probe the end of the dial indicator from
the approach position in Figure 4.2a to the probe position in Figure 4.2b where
a recording of the dial indicator measurement was taken in excel. This path is
repeated for 30 cycles and then repeated for 30 cycles on the y-axis and z-axis by
changing each axis’s tool orientation. The process was automated using the python

38

script using the MoveIt commander python API leaving a 15 second delay between
each probe to read and record the dial indicator measurement.

(a) BCR1 Approach Dial Indicator (b) BCR1 Probe Dial Indicator

Figure 4.2: Dial Indicator Measurements

For the arm to move in the same trajectory path for the 30 cycles, an appropriate
planning library was required of the five available planners the MoveIt library
supports. A planning library is required for arms that have six or more joints
due to the nature of the kinematic model; these arms can have multiple solutions
for trajectory path planning to reach the desired goal whilst considering possible
collisions that the robot could have through its range of motion. A trajectory
motion planner determines how each joint should move through space to reach the
target goal. The first and most popular planning library available is the Open
Motion Planning Library (OMPL), an open-source motion planning library that
implements a range of sampling-based motion planning algorithms that MoveIt can
directly implement. The OMPL planner is set to default to the motion planner in the
MoveIt configuration package for new robots. The second commonly used planner is
the Pilz Industrial Motion Planner, a deterministic generator for linear and circular
motions, whilst having the ability to merge multiple motion sequences together. This
motion planner has been optimised for calculating the path for the shortest possible
trajectory. The Stochastic Trajectory Optimisation for Motion Planning (STOMP)
is an optimised-based motion planner developed to plan smooth trajectories designed
for obstacle avoidance and optimisation for constraints. Search-Based Planning
Library (SBPL) is a generic set of motion planners that use search-based planning
but aren’t fully integrated into the MoveIt library, with limited functionality. The
last planner available for MoveIt is the Covariant Hamiltonian Optimization for
Motion Planning (CHOMP). That uses a novel gradient-based trajectory optimisa-
tion technique, allowing for everyday simple motion planning, both trainable and
straightforward, allowing for quick solvable solutions based on the implemented
algorithm [38].

In order to benchmark the arm the technique required the arm to follow the

39

same trajectory. After analysing the different motion planning libraries available
from the MoveIt package, it was decided the Pilz motion planner would be most
suitable as it can calculate the path quickly with the shortest possible trajectory.
While considering potential joint collisions, the popular default OMPL planner
occasionally would calculate varying trajectories that were slightly longer, although
having relatively the same planning time.

4.2 Repeatability Results

The experimental data gathered for each axis can be seen in Figure 4.3-4.5 where
the points are plotted as deviations from the mean for each dataset. Each plot
represents a pose repeated 30 times for each axis; it was noticeable the x-axis has
the greatest repeatability, with the largest outlier being 1.136mm from the mean.
This was expected to be the best axis for repeatability due to all the joint motors in
this direction already have pre-applied torque to the motors reducing the effect of
backlash in the motors affecting the repeatability. The Y-axis has a larger deviation
from the mean with the largest outlier being 1.990mm. The main reasoning behind
the Y-axis having a slightly greater error from the X-axis is due to joint 1 of the
arm that has no torque acting on the motor, therefore the backlash in the DC
geared motors would be influencing these results. Whilst the Z-axis had the largest
deviation from the mean being 5.342mm, the main reason for this large repeatability
error was caused by joint 2, as the motor torque is slightly underpowered and not
always capable of consistently reaching its target goal.

Figure 4.3: Repeatability in X-axis

40

Figure 4.4: Repeatability in Y-axis

Figure 4.5: Repeatability in Z-axis

The standard deviation for each axis can be seen in Table 4.1 displaying the
dispersion of results with the z-axis having the greatest distribution of data.

Table 4.1: Standard Deviation of X,Y & Z Axis

Axis Standard Deviation
X 0.513
Y 0.953
Z 2.522

4.2.1 Repeatability Analysis

In three-dimensional Cartesian space, points have three components to find the
coordinate position. To find the distance between two points in a straight line, the
distance formula as seen in Equation 4.1 can be applied to the results for the x,y
and z-axis.

In applying this to the raw data, the total repeatability of the BCR1 for the
test position in 3D space can be observed, with the max deviation of the arm being
5.448mm radius from the median test point position. Therefore, the arm within this
vicinity can reach a target pose within ±5.488mm. This is observed as the largest
possible deviation being an outlier as seen in Figure 4.6 from 30 data points with
the average deviation being ±2.376mm.

41

R =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (4.1)

Figure 4.6: Combined Resultant Repeatability of BCR1

Further analysis of the data is evident in plane form, showing each point the
arm reached and the distance away from the mean of the data. In Figure 4.7 is
seen in 3D space, the points surrounding the data mean; the larger green dot. The
further away a point is from the mean test point in a straight line, the dot colour
converges to red. Through visualising the data in this form, it is evident that the
X, Y plane has the greatest repeatability whilst the X, Z plane and Y, Z plane
have more significant variance in the distance from the test mean. This is due to
Z-axis position error from lack of torque at low control voltages caused by low joint
velocities calculated through the ROS controller.

Figure 4.7: Repeatability in Each Plane 3D Space

42

4.3 Costing

One of the key areas was to keep the design affordable with off the shelf com-
ponents and rapid manufacturing techniques. Through research and sourcing of
materials, the overall arm cost was able to meet this criterion coming in at a final
cost of $268.78 AUD as seen in Table 4.2. This was achieved in multiple ways
including, finding an overseas supplier for the majority of the electrical components
and bearings, and using a consistent design that requires very few different types of
hardware and keeping bolt sizes consistent. One cost-saving component was having
all the links 3D printed, which was the project’s aim; in doing so, it kept the design
low cost, as designing parts to be injection moulded is a costly process and can cost
up to $5000+ AUD. In addition, the cost of the arm was kept lower by reducing
the amount of filament required for the components by designing parts that require
no support in the FDM printing process. This was able to keep the weight of the
filament needed to ≈ 1200g. The overall printing time for all the components took
≈ 65hrs with the approximate power consumption of the machine being 90 watts.
The total print time consumed ≈ 5.85kWh. With the average cost of power in
Australia being 27c/kWh, the total printing cost came to a total of $1.58 from the
total consumed energy.

Table 4.2: BCR1 Costing

Item Quantity Per Unit Total Supplier
Micro DC 12V 10 (600:1) 4 $16.3 $65.2 AliExpress
Micro DC 12V 10 (600:1) 2 $10.7 $21.4 AliExpress
RS, 6806 1 $3.16 $3.16 AliExpress
RS,6807 1 $3.89 $3.89 AliExpress
Hall Effect Sensor Module 6 $4.95 $29.7 JayCar
Arduino Atmega2560 1 $22.03 $22.03 AliExpress
L298N Motor Driver 3 $2.12 $6.36 AliExpress
Arduino Atmega2560 Terminal Shield 1 $9.76 $9.76 AliExpress
26 AWG Wire 3 $4.95 $14.85 JayCar
Aluminium Sheet (600x600) Optional 1 $26.55 $26.55 Ullrich Aluminium
USB-B Extension Cable 1 $2.24 $2.24 AliExpress
Heat Inserts (100pcs) 1 $5.63 $5.63 AliExpress
3D Printer Filament PETG (1kg) 2 $28.99 $57.98 Amazon

Total $268.75

43

CHAPTER 5
Discussion and Conclusion

This chapter made an overall understanding and conclusions from the key find-
ings through the project development and research. It evaluates the effectiveness of
the project and if it met the set criteria initially outlined.

5.1 Key Findings

Through this research, multiple outcomes were discovered and achieved. The
main results include designing a low-cost 3D printed 6 DOF robotic arm, ROS
control Interface and benchmarking the repeatability of the final design. Through
these critical findings, there is a basis for future development that can be achieved.
The most significant outcome of this project was the ROS Hardware Interface
controller. This is because there is very little ROS documentation on how to
implement hardware interfaces, particularly an effort controller with closed loop
control, as there aren’t many robots out there that use low-cost hardware. Instead,
have more advanced controllers with pre-existing ROS packages written for them.
There are existing ROS enabled low-cost arms; they are open-loop systems that
don’t have any feedback and use the fake controller that the MoveIt Setup Assistant
generates. Not being able to determine the actual arm position, for example, if
a motor were to be interrupted, such as a stepper motor skipping steps, the arm
wouldn’t be able to correct for this type of behaviour. In contrast, the BCR1
setup can determine the actual robot position by tracking each of the six motor
encoders. After designing the BCR1 and setting up an appropriate controller, one
key finding was that DC motors are not necessarily the best solution for a robotic
arm. Due to the control method in controlling DC motor speeds, a lower voltage
supply is required, but a lower voltage supply to the motor means the torque is
proportionally less than the rated torque. On the other hand, a stepper motor has
higher torque at lower rpm and decreases with speed. Another option would be
a BLDC Brushless motor which has higher starting torques with the mechanical
advantage of not requiring brushes for commutation but instead using electronic
control controlling commutation [39].

44

5.2 Arm Design

The overall arm design was quite simplistic, with it being easy to assemble with
very little hardware required. The arms design was made so that it was able to be
fully printed without the need for any support material. In turn, it saved costs on
the filament and reduced print time, saving on power costs as well. Each link could
be assembled and easily joined together using the coupling design that allowed each
link to interconnect. The control box also allowed for universal use case scenarios,
possibly using it for future designed arms.

5.3 Conclusion

In summation, the conducted research project involved various aspects that were
key to the project’s success, with each core area dependent on the previous research
and project development. Although the project was a success, there is still room for
improvement in multiple areas.

Throughout the project, it demonstrates that ROS is a suitable controller for a
robotic system with active tools and existing packages readily available. Although, it
is challenging to implement into real-life applications with very little documentation
on integrating software with real-life hardware. ROS is designed as a communication
layer median for a robotic arm/system. There is usually an added software layer
for creating control plans and trajectories, whether this is path planning for weld-
ing, pick and place operations, human-assisted interaction or toolpath operations.
Furthermore, development can be done to add more functionality to the arm see
Chapter 6.

The overall arm design was lacking in some areas. Still, it served the initial
purpose of benchmarking to determine the repeatability of the arm, which was able
to be carried out despite some results having more significant errors. The project’s
aim was met and gave insight into future improvements that can be made to the
BCR1 design. This concept was initially discussed at the start of the project using
this research as a building block for future research into low-cost 3D printed ROS
enabled robotic arms.

Furthermore, the project displayed that an industrial solution control system can
be applied to a small scale design and implemented using all open-source hardware
readily available with off the shelf components. Implementing ROS has opened
up the development opportunities for integrating the arm into various workspaces
upon developing the higher-level control interface, whether it is a GUI interface or
integration with existing software.

45

CHAPTER 6
Future Work and
Recommendations

This chapter outlines various topics for further future work and design that were
not considered within the project due to time constraints and complexity. The
three key focuses are improvements to the design, software development and use
case scenarios. More optimisation can be done through this work, improving the
arm over time.

6.1 BCR1 improvements

One of the first improvements could be on joints 1 & 4 that require using a
bearing. The main concern was the shaft attaching to the bearing adaptor whilst
modifying a thrust bearing on joint 1 to handle the moment/torque caused by the
arm extending. The radial bearing has a bit of play, not being able to constrain
the joint fully. The second flaw in the design is the backlash in the DC geared
motors having around ±1.9 deg, which causes an additional error that affects the
repeatability of the arm. This would require sourcing possibly more expensive
motors or contacting the supplier to see if it is possible to work to a tighter tolerance
on the motor specifications. A critical design missing from the BCR1 Robot design
was an end effector/tool; a mounting plate was added to the robot’s end for a
future tool to be designed and mounted. One crucial issue with the arm was joint
2 being slightly underpowered. Two issues caused this: the power supply and the
motor specifications of the stall torque being slightly less than specified. Therefore
changing the motor in joint 2 to a larger gear reduction motor would help eliminate
this issue.

6.2 Software Development

A key area for development would be writing software packages for ROS to have
greater control over the arm, allowing for better control for a range of applications,

46

essentially permitting the robot to understand the working environment. This could
include writing packages to integrate camera vision for 2D vision, lidar for 3D vision,
Force Torque Sensors, Collision Detector Sensors, or even part detection sensors.
Furthering the software development on the arm will open up the opportunity to
use the arm in various applications, whether repetitive or small one-off handling
tasks that would normally require an operator to interfere with the job/task. One
main useful software design feature that would aid the robot would be a graphical
user interface (GUI) having the ability to enter the X, Y and Z coordinates along
with the rotational matrix. Also, having other buttons and functions for gripper
control, homing, and a teach pendant can save end-effector positions in a program
that can then run through the interface.

6.3 Integration Into Applications

There is a wide range of applications for light tasks that the BCR1 arm could be
applied towards. Such as a small production line, handling a small PCB assembly
process, moving PCBs from a staging plate of a pick n’ place machine and into a
solder reflow oven. With 3D printing becoming quite a growing hobby, profession
and professional industry, the BCR1 could open opportunities for desktop 3D printer
makers and hobbyists. The arm is a low-cost design, and nearly all 3D printed.
Opening up to the community allowing the arm to be applied towards being a
companion for a 3D printer. This could involve removing finished prints or even
entire print beds if this is an available option. Whilst also interacting with an active
print. If this involves pausing the print to add a particular part, whether it be a
nut for a thread or some added weight to give the print more weight, reducing the
need to rely on a user to be around when the print reaches the target layer where
the interaction needs to occur.

With readily available platforms and print management platforms open source,
allowing integration to be possible. Octoprint is an open-source 3D printer web
interface designed to control and interface with desktop 3D printers. The interface
design has been developed so it is fully extendable, allowing users to write plugins
in python that can be installed onto the Octoprint instance. Since ROS allows for
python communication through the MoveIt commander, it could be possible to map
the bed regarding the robot’s position and enable it to understand where parts are
located on the build plate.

47

References
[1] F. Negrello, H. S. Stuart, and M. G. Catalano, “Hands in the real world,”

Frontiers in Robotics and AI, vol. 6, no. 147, 2020.

[2] M. E. Moran, “Evolution of robotic arms,” Journal of robotic surgery, vol. 1,
p. 103–111, 2007.

[3] “Ros.org | about ros,” Ros.org, 2021. [Online]. Available: https://www.ros.
org/about-ros/

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” vol. 3, 01 2009.

[5] A. Ademovic, “An introduction to robot operating system: The ultimate robot
application framework,” Toptal Engineering Blog, 2016. [Online]. Available:
https://www.toptal.com/robotics/introduction-to-robot-operating-system#:
~:text=The%20main%20languages%20for%20writing,preferred%20due%
20to%20better%20performance.

[6] R. McCollin, “A complete guide on xmlrpc.php in wordpress (what it is,
security risks, how to disable it),” Kinsta, 07 2020. [Online]. Available:
https://kinsta.com/blog/xmlrpc-php/

[7] “Ros/introduction - ros wiki,” Ros.org, 2018. [Online]. Available: http:
//wiki.ros.org/ROS/Introduction

[8] R. K. Megalingam, A. Sahajan, A. Rajendraprasad, S. K. Manoharan,
and C. P. K. Reddy, “Ros based six-dof robotic arm control through can
bus interface.” 2021 5th International Conference on Intelligent Computing
and Control Systems (ICICCS): Institute of Electrical and Electronics
Engineers Inc., Conference Proceedings, pp. 739–744. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.uow.edu.au/document/9432341

[9] H. Wu, H. Handroos, and P. Pessi, “Mechatronics design and
development towards a heavy-duty waterhdraulic welding/cutting robot,”
Mechatronics for Safety, Security and Dependability in a New Era, pp. 421–426,
2007. [Online]. Available: https://www.sciencedirect.com/topics/engineering/
forward-kinematics

48

https://www.ros.org/about-ros/
https://www.ros.org/about-ros/
https://www.toptal.com/robotics/introduction-to-robot-operating-system#:~:text=The%20main%20languages%20for%20writing,preferred%20due%20to%20better%20performance.
https://www.toptal.com/robotics/introduction-to-robot-operating-system#:~:text=The%20main%20languages%20for%20writing,preferred%20due%20to%20better%20performance.
https://www.toptal.com/robotics/introduction-to-robot-operating-system#:~:text=The%20main%20languages%20for%20writing,preferred%20due%20to%20better%20performance.
https://kinsta.com/blog/xmlrpc-php/
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://ieeexplore-ieee-org.ezproxy.uow.edu.au/document/9432341
https://www.sciencedirect.com/topics/engineering/forward-kinematics
https://www.sciencedirect.com/topics/engineering/forward-kinematics

[10] S. Hernandez-Mendez, C. Maldonado-Mendez, A. Marin-Hernandez, H. V.
Rios-Figueroa, H. Vazquez-Leal, and E. R. Palacios-Hernandez, “Design and
implementation of a robotic arm using ros and moveit!” in 2017 IEEE In-
ternational Autumn Meeting on Power, Electronics and Computing (ROPEC).
Institute of Electrical and Electronics Engineers Inc., Conference Proceedings,
pp. 1–6.

[11] “rviz - ros wiki,” Ros.org, 2013. [Online]. Available: http://wiki.ros.org/rviz#
Overview

[12] F. Joshua, “frankjoshua rosserial arduino lib,” GitHub, 2020. [Online].
Available: https://github.com/frankjoshua/rosserial_arduino_lib

[13] “rqt/plugins - ros wiki,” Ros.org, 2016. [Online]. Available: http:
//wiki.ros.org/rqt/Plugins

[14] “rqt - ros wiki,” Ros.org, 2014. [Online]. Available: http://wiki.ros.org/rqt

[15] E. Robotics, “Understanding ros nodes · erle robotics gitbook,” Gitbooks.io,
2018. [Online]. Available: https://erlerobotics.gitbooks.io/erlerobot/content/
en/ros/tutorials/understanding_ros_nodes.html

[16] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Ro-
dríguez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola,
M. Lüdtke, and E. Fernández Perdomo, “ros_control: A generic and
simple control framework for ros,” The Journal of Open Source Software,
2017. [Online]. Available: http://www.theoj.org/joss-papers/joss.00456/10.
21105.joss.00456.pdf

[17] “catkin/workspaces - ros wiki,” Ros.org, 2017. [Online]. Available: http:
//wiki.ros.org/catkin/workspaces

[18] E. P. Company, “White paper - the basics of how
an encoder works,” Encoder.com, 2011. [Online]. Available:
https://www.encoder.com/wp2011-basics-how-an-encoder-works#:~:
text=Encoders%20convert%20motion%20to%20an,count%2C%20speed%
2C%20or%20direction.

[19] “Amazon.com: Dc worm gear motor 12v high torque reduction gear box with
encoder srong self-locking 0.236 in output shaft (10rpm) : Herramientas y mejo-
ras del hogar,” Amazon.com, 2021. [Online]. Available: https://www.amazon.
com/Walfront-Torque-Reduction-Encoder-Self-Locking/dp/B073S5GM6Q

49

http://wiki.ros.org/rviz#Overview
http://wiki.ros.org/rviz#Overview
https://github.com/frankjoshua/rosserial_arduino_lib
http://wiki.ros.org/rqt/Plugins
http://wiki.ros.org/rqt/Plugins
http://wiki.ros.org/rqt
https://erlerobotics.gitbooks.io/erlerobot/content/en/ros/tutorials/understanding_ros_nodes.html
https://erlerobotics.gitbooks.io/erlerobot/content/en/ros/tutorials/understanding_ros_nodes.html
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://wiki.ros.org/catkin/workspaces
http://wiki.ros.org/catkin/workspaces
https://www.encoder.com/wp2011-basics-how-an-encoder-works#:~:text=Encoders%20convert%20motion%20to%20an,count%2C%20speed%2C%20or%20direction.
https://www.encoder.com/wp2011-basics-how-an-encoder-works#:~:text=Encoders%20convert%20motion%20to%20an,count%2C%20speed%2C%20or%20direction.
https://www.encoder.com/wp2011-basics-how-an-encoder-works#:~:text=Encoders%20convert%20motion%20to%20an,count%2C%20speed%2C%20or%20direction.
https://www.amazon.com/Walfront-Torque-Reduction-Encoder-Self-Locking/dp/B073S5GM6Q
https://www.amazon.com/Walfront-Torque-Reduction-Encoder-Self-Locking/dp/B073S5GM6Q

[20] B. Earl, “All about stepper motors,” Adafruit Learning System, 05 2014.
[Online]. Available: https://learn.adafruit.com/all-about-stepper-motors/
what-is-a-stepper-motor

[21] “How servo motors work | servo motors high efficiency and power,”
Jameco.com, 2021. [Online]. Available: https://www.jameco.com/Jameco/
workshop/Howitworks/how-servo-motors-work.html

[22] “History of microcontrollers | toshiba electronic devices and storage
corporation,” Semicon-storage.com, 2021. [Online]. Available: https://www.
electronicshub.org/arduino-mega-pinout

[23] “Arduino mega pinout | arduino mega 2560 layout, specifications,”
Electronics Hub, 01 2021. [Online]. Available: https://www.electronicshub.
org/arduino-mega-pinout/

[24] L. M. Engineers, “Interface l298n dc motor driver module with arduino,” Last
Minute Engineers, 11 2018. [Online]. Available: https://lastminuteengineers.
com/l298n-dc-stepper-driver-arduino-tutorial/

[25] Toglefritz, “Types of endstops,” Toglefritz’s Lair, 07 2015. [Online].
Available: https://toglefritz.com/types-of-endstops/#:~:text=There%20are%
20three%20different%20types,%2C%20optical%2C%20and%20Hall%20effect.

[26] “Everything you need to know about hall effect sensors | rs
components | rs australia,” Rs-online.com, 2014. [Online]. Available:
https://au.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/
hall-effect-sensors-guide#:~:text=So%2C%20how%20does%20a%20Hall,
sense%20the%20position%20of%20objects.

[27] khalil idrissi, “Degrees of freedom of a robot - khalil idrissi - medium,”
Medium, 04 2020. [Online]. Available: https://medium.com/@khalil_idrissi/
degrees-of-freedom-of-a-robot-c21624060d25

[28] A. Reddy, “Transfer function of armature controlled
dc motor,” Electrical Engineering Info, 05 2017. [On-
line]. Available: https://www.electricalengineeringinfo.com/2017/05/
transfer-function-armature-controlled-dc-motor.html

[29] “Control tutorials for matlab and simulink - introduction: Pid controller
design,” Umich.edu, 2022. [Online]. Available: https://ctms.engin.umich.edu/
CTMS/index.php?example=Introduction§ion=ControlPID

50

https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor
https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor
https://www.jameco.com/Jameco/workshop/Howitworks/how-servo-motors-work.html
https://www.jameco.com/Jameco/workshop/Howitworks/how-servo-motors-work.html
https://www.electronicshub.org/arduino-mega-pinout
https://www.electronicshub.org/arduino-mega-pinout
https://www.electronicshub.org/arduino-mega-pinout/
https://www.electronicshub.org/arduino-mega-pinout/
https://lastminuteengineers.com/l298n-dc-stepper-driver-arduino-tutorial/
https://lastminuteengineers.com/l298n-dc-stepper-driver-arduino-tutorial/
https://toglefritz.com/types-of-endstops/#:~:text=There%20are%20three%20different%20types,%2C%20optical%2C%20and%20Hall%20effect.
https://toglefritz.com/types-of-endstops/#:~:text=There%20are%20three%20different%20types,%2C%20optical%2C%20and%20Hall%20effect.
https://au.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/hall-effect-sensors-guide#:~:text=So%2C%20how%20does%20a%20Hall,sense%20the%20position%20of%20objects.
https://au.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/hall-effect-sensors-guide#:~:text=So%2C%20how%20does%20a%20Hall,sense%20the%20position%20of%20objects.
https://au.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/hall-effect-sensors-guide#:~:text=So%2C%20how%20does%20a%20Hall,sense%20the%20position%20of%20objects.
https://medium.com/@khalil_idrissi/degrees-of-freedom-of-a-robot-c21624060d25
https://medium.com/@khalil_idrissi/degrees-of-freedom-of-a-robot-c21624060d25
https://www.electricalengineeringinfo.com/2017/05/transfer-function-armature-controlled-dc-motor.html
https://www.electricalengineeringinfo.com/2017/05/transfer-function-armature-controlled-dc-motor.html
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID

[30] G. Ellis, “Four types of controllers,” Control System Design Guide, pp. 97–119,
2012.

[31] “A detailed history of 3d printing,” 3D Insider, 03 2017. [Online]. Available:
https://3dinsider.com/3d-printing-history/

[32] J. T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton,
A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. G. Ifju, “Experimental
characterization of the mechanical properties of 3d-printed abs and polycar-
bonate parts,” Rapid Prototyping Journal, vol. 23, no. 4, pp. 811–824, 2017.

[33] “Manipulating industrial robots - Performance criteria and related test
methods,” International Organization for Standardization, Standard, Apr.
1998. [Online]. Available: https://www-saiglobal-com.ezproxy.uow.edu.au/
online/Product/Index/isoc000739255

[34] G. Kuric Ivan, Tlach Vladimír, Ságová Zuzana, Císar Miroslav, “Measurement
of industrial robot pose repeatability,” MATEC Web Conf., vol. 244, pp. 1–9,
2018.

[35] “Dassault systèmes,” World Economic Forum, 2022. [Online]. Available:
https://www.weforum.org/organizations/dassault-systemes

[36] ros, “ros solidworks urdf exporter solidworks to urdf exporter,” GitHub, 09
2021. [Online]. Available: https://github.com/ros/solidworks_urdf_exporter

[37] “ros_control_boilerplate - ros wiki,” Ros.org, 2019. [Online]. Available:
http://wiki.ros.org/ros_control_boilerplate

[38] “Planners | moveit,” Ros.org, 2022. [Online]. Available: https://moveit.ros.
org/documentation/planners/

[39] “Brushless vs brushed dc motors: When and why to choose one over
the other | article | mps,” Monolithicpower.com, 2020. [Online]. Available:
https://www.monolithicpower.com/en/brushless-vs-brushed-dc-motors

[40] “Rep 3 – target platforms (ros.org),” Ros.org, 2011. [Online]. Available:
https://www.ros.org/reps/rep-0003.html

51

https://3dinsider.com/3d-printing-history/
https://www-saiglobal-com.ezproxy.uow.edu.au/online/Product/Index/isoc000739255
https://www-saiglobal-com.ezproxy.uow.edu.au/online/Product/Index/isoc000739255
https://www.weforum.org/organizations/dassault-systemes
https://github.com/ros/solidworks_urdf_exporter
http://wiki.ros.org/ros_control_boilerplate
https://moveit.ros.org/documentation/planners/
https://moveit.ros.org/documentation/planners/
https://www.monolithicpower.com/en/brushless-vs-brushed-dc-motors
https://www.ros.org/reps/rep-0003.html

APPENDIX A
Original Project Specifications

This page is intentionally left blank.

52

SCHOOL OF ELECTRICAL, COMPUTER AND TELECOMMUNICATIONS
ENGINEERING

ECTE456 PROJECT PROPOSAL FORM

1. Candidate Details

Name: Brock Cooper

Student No: 5791340

Supervisor: Dr Prashan Premaratne

Title of Project:
To benchmark and determine the performance of a 3D printed 6 degrees of freedom (DOF) robotic
arm.

Brief Overview:

Robotic arms are used in various tasks and are designed for specific applications to automate
certain tasks. Industry developed robotic arms can have different degrees of freedom (DOF)
consisting of various joint types. These are the total number of independent displacements or
motions that an armature can move.

When designing robotic arms, theoretical calculations can be determined for the design's operational
capacity by using the datasheets of the components. However, this won't provide insight into the
real-world performance of the DIY 3D printed arm. Therefore, a series of standardised benchmarking
tests designed to determine the performance of robotic arms will be applied. Through undertaking
these experiments and critically analysing the data for the DIY robotic arm, it will demonstrate the
capabilities of the 6 DOF robotic arm and outline applications the arm would be best suited towards.

A 3D printed arm will be designed and integrated with ROS (Robot Operating System) for more
advanced path/trajectory planning to operate more complex tasks with optimal path planning. This
will allow for manipulating the arm to carry out an experimental design setup to test the arm's
performance.

 53

2. Project Description:
Robotic arms have been used in industry for quite some time now and are becoming more
accessible to everyday consumers. However, many closed source software doesn't allow the end-
user to experiment with their concepts and customise. The main concern is having more advanced
control over a robotic arm, which can aid in benchmarking for determining machine accuracy. The
main focus will be determining the pose repeatability of the device through experimentation further
determined through research and ISO 9283:1998 standards.

A major issue when designing 3D printed robotic arms is the control system and how to benchmark
the final design accurately. Previous studies show that printed arms can articulate each joint to a
certain angle but cannot have more complex inverse kinematic solvers. This would allow the user to
have more control that would be beneficial for accurately benchmarking a 3D printed 6-axis robotic
arm through a series of manipulation tests, moving all 6 joints to and from a position and
determining the performance and capabilities. Using an advanced inverse kinematic solver with a
more industrial approach will allow adapting industrial testing methods to open-source designs.

The project is essential as it addresses possible design flaws present in 3D printing Robotic arms
and helps develop a more accurate, robust design. The data obtained through experimentation
could be applied in future concepts to improve on any design flaws that are currently present and
limit the operational performance. In turn, could help in the progress of the development of 3D
printed robotic arms for rapid prototyping and manufacturing.

Project Outcomes/Objectives:

• Comprehensive Literature Review
• Developing CAD Model with Unified Robot Definition Format (URDF) model for RViz and

MoveIT
• Create a C++ and Python program to integrate with ROS
• Design an affordable low cost 6 axes robotic arm that can be almost fully 3D printed.
• Understanding ROS communication protocol
• Setup testing rigs to conduct a performance test on the arm
• Develop a Report, Present Findings through Presentations, Video Demonstration and

Posters
• Have a functional Robotic Arm that can be used to complete set tasks with complex path

planning

 54

3. Project Plan:

To critically analyse a 3D printed robotic arm, an extensive literature review will be required
referencing different techniques and standards that are currently used during the Summer session.
It is crucial to undertake a comprehensive review to have a fair testing ground that other research
studies have undertaken. Whilst researching into using ROS as a control system. The main plan to
follow consist of 3 major steps being:

Develop of 3D CAD model
The first object consists of breaking down the current robotic arm and developing a CAD model and
assembly that will be required to make the unified robot description format (URDF). This file will be
necessary to create a 3D model simulation using RViz and MoveIT plugin in ROS. The model will
be generated using Solidworks, which will enable exporting the URDF model required for creating
the ROS package.

3D Printing and Assembling Low-Cost Robotic Arm
3D printing will be a significant component of the design as all the parts of the arm will be printed
from PETG plastic, this plastic will be used as it can be printed in both enclosed and non-enclosed
printers due to the lower glass transition temperature. Meaning if an enclosed printer is not an
option, it can still be printed with a stronger tensile strength than PLA.

Control method with complex inverse kinematic solver
To write a C/C++ program that can interface with Robot Operating System (ROS) using an
ATmega2560 as the main control board for controlling each of the motors that articulate each joint.
This program will consist of determining how ROS publishes data and being able to decode and
use the information in Arduino to have accurate motor control. The added functionality of using
ROS as a complex inverse kinematic solver also has advanced collision detection, eliminating the
robot from overextending or hitting objects or colliding with it's own links. A PID controller will need
to be implemented in either ROS or the Arduino Program to control the Motor positions more
accurately.

Experimentation/method
To calculate the performance and error of the arm through a series of tests following similar
procedures to past experiments. The primary method will require a digital/analogue dial indicator
that will be used to measure the repeatability of the arm and used for calculating positional error.
This method is being adopted as it follows the ISO 9283:1998 standards used to test industrial
robotic arms performance.

The experimental data won't necessarily have any baseline to compare against being a one-off
design but rather allow for analysing the robotic arm physically and determining any deviations that
could be causing specific trends in the data. If the method is carried out in a similar format to the
ISO9283:1998 standards, then the results should accurately represent the accuracy of the arm.

 55

4. Resources Required: (Expand to a half a page maximum)

Software:

• Robotic Operating system (ROS)
• Arduino
• Ubuntu Linux Focal Fossa 20.04
• Solidworks 2018 – Student License computer-aided design (CAD)

Hardware:

• ATmega 2560 (Arduino)
• 12V DC Encoder Motors x6
• 12V Computer PSU (Power Supply)
• 3D Printer – Print Test Mounts
• CNC Fibre Optic Laser Cutter
• Measurement Devices (eg. Dial Indicator)

Student Signature
Declaration by the student: I have understood the feedback provided to me by the supervisor.

 Signature Date
Student Name:

Brock Cooper

Note: the typical overall page count should not exceed 15 pages

Main Objectives for Semester 2:

1. Add to literature Review
2. Setup ROS Controller and Integrate with 6 Motors
3. Finish off CAD model and create URDF Package
4. Create a ROS Launch Package of 6 Axis Robotic Arm
5. Incorporate a Homing Routine
6. Finish 3D Printing and Building Robotic arm
7. Finish Wiring all the Hardware together
8. Run through a series of Experiments and synthesise the results

Semester 2 Planner
To benchmark and determine the performance of a 3D printed 6 degrees of freedom

(DOF) robotic arm.
Task Week

Design CAD Model for 6 Axis Arm 2-5
Wire Up Control Box 3-5
3D Print All Arm Parts 5-6

Finish writing Code to Integrate 6 Motor Controllers for ROS 5-6
Assemble Arm 3D Printed Components 6-7

Wire all motors with connectors for control unit 6-7
Conduct Experimental Analysis 8-9

Write up results and methodology 9-12
Design Presentation with Video Demonstration 11-13

Design Poster 12-14

20/03/2022

56

APPENDIX B
Logbook Summary Sheet

This page is intentionally left blank.

57

APPENDIX C
ROS Flowchart

Figure C.1: Nodes and Topics Overview for Demo Controller

58

Figure C.2: Nodes and Topics Overview for BCR1

59

APPENDIX D
ROS Distributions

Table D.1: List of ROS Distributions and Lifespan [40].

ROS Distribution Release Date EOL Supported Ubuntu System
ROS Noetic Ninjemys May 23rd, 2020 May, 2025 Ubuntu Focal Fossa (20.04)

ROS Melodic Morenia May 23rd, 2018 May, 2023 Ubuntu Artful (17.10)
Ubuntu Bionic (18.04)

ROS Lunar Loggerhead May 23rd, 2017 May, 2019
Ubuntu Xenial (16.04)

Ubuntu Yakkety (16.10)
Ubuntu Zesty (17.04)

ROS Kinetic Kame May 23rd, 2016 Apr. 2021 Ubuntu Wily (15.10)
Ubuntu Xenial (16.04)

ROS Jade Turtle May 23rd, 2015 May, 2017
Ubuntu Trusty (14.04)
Ubuntu Utopic (14.10)
Ubuntu Vivid(15.04)

ROS Indigo Igloo Jul. 22nd, 2014 Apr. 2019 Ubuntu Saucy (13.10)
Ubuntu Trusty (14.04 LTS)

ROS Hydro Medusa Sept. 4th, 2013 May, 2015
Ubuntu Precise (12.04 LTS)

Ubuntu Quantal (12.10)
Ubuntu Raring (13.04)

ROS Groovy Galapagos Dec. 31, 2012 Jul. 2014
Ubuntu Oneiric (11.10)

Ubuntu Precise (12.04 LTS)
Ubuntu Quantal (12.10)

ROS Fuerte Turtle Apr. 23, 2012 –
Ubuntu Lucid (10.04 LTS)

Ubuntu Oneiric (11.10)
Ubuntu Precise (12.04 LTS)

ROS Electric Emys Aug. 30, 2011 –

Ubuntu Lucid (10.04 LTS)
Ubuntu Maverick (10.10)

Ubuntu Natty (11.04)
Ubuntu Oneiric (11.10)

ROS Diamondback Mar. 2, 2011 –
Ubuntu Lucid (10.04 LTS)
Ubuntu Maverick (10.10)

Ubuntu Natty (11.04)

ROS C Turtle Aug. 2, 2010 –

Ubuntu Jaunty (9.04)
Ubuntu Karmic (9.10)

Ubuntu Lucid (10.04 LTS)
Ubuntu Maverick (10.10)

ROS Box Turtle Mar. 2, 2010 –

Ubuntu Hardy (8.04 LTS)
Ubuntu Intrepid (8.10)
Ubuntu Jaunty (9.04)
Ubuntu Karmic (9.10)

60

APPENDIX E
MATLAB Code
E.1 BCR1 Forward Kinematics

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % 6 AXIS ROBOT THESIS ARM (bcr1)
3 % Author : Brock Cooper
4 % SN: 5791340
5 % Date : 4/03/2022
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 c l e a r a l l
8 c l c
9

10 syms theta d a alpha
11

12 T = vpa ([(cos (theta)) (−cos (alpha)) ∗(s i n (theta)) (s i n (alpha)) ∗(s i n (theta)) a ∗(cos (
theta)) ; . . .

13 (s i n (theta)) (cos (alpha)) ∗(cos (theta)) (− s i n (alpha)) ∗(cos (theta)) a ∗(s i n (
theta)) ; . . .

14 0 (s i n (alpha)) (cos (alpha)) d
; . . .

15 0 0 0 1
. . .

16]) ;
17

18 syms q1 q2 q3 q4 q5 q6 ;
19 syms d1 d2 d3 d4 d5 d6 ;
20 syms a1 a2 a3 a4 a5 a6 ;
21 syms alpha1 alpha2 alpha3 alpha4 alpha5 alpha6 ;
22 % syms pi
23

24 % INPUT PARAMETERS
25 % theta_in = [q1 q2+(p i /2) q3 q4 q5 q6] ; % Enter in terms rad ians (p i)
26 % d_in = [d1 0 0 d4 0 d6] ; % Enter in decimal
27 % a_in = [0 a2 0 0 0 0] ; % Enter in decimal
28 % alpha_in = [p i /2 0 p i /2 −pi /2 p i /2 0] ; % Enter in terms o f Radians
29

30 % INPUT PARAMETERS
31 theta_in = [0 0+(p i /2) 0 0 0 0] ; % Enter in terms rad ians (p i)
32 d_in = [1 4 1 . 5 0 0 183 .6 0 1 3 4 . 5] ; % Enter in decimal
33 a_in = [0 178 .0 0 0 0 0] ; % Enter in decimal
34 alpha_in = [p i /2 0 p i /2 −pi /2 p i /2 0] ; % Enter in terms o f Radians
35

36 % C a l c u l a t i n g from Base to Wrist
37 di sp (" F i r s t 3 m a t r i c i e s from the base to the w r i s t are seen below : ")
38 T1_0 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (1) , d_in (1) , a_in (1) , alpha_in (1) }))
39 T2_1 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (2) , d_in (2) , a_in (2) , alpha_in (2) }))
40 T3_2 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (3) , d_in (3) , a_in (3) , alpha_in (3) }))

61

41

42 tool_b1 = s i m p l i f y (T1_0∗T2_1)
43 di sp (’ mul t ip ly by T3_2 ’)
44 di sp (’ F ina l Tool Base Wrist i s : ’)
45 tool_bw = s i m p l i f y (tool_b1 ∗T3_2) % T_Base−−>Wrist
46

47 % C a l c u l a t i n g from Wrist to Tool
48 di sp (" Second 3 m a t r i c i e s from the w r i s t to the Tool are seen below : ")
49 T4_3 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (4) , d_in (4) , a_in (4) , alpha_in (4) }))
50 T5_4 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (5) , d_in (5) , a_in (5) , alpha_in (5) }))
51 T6_5 = vpa (subs (T, { theta , d , a , alpha } ,{ theta_in (6) , d_in (6) , a_in (6) , alpha_in (6) }))
52

53 tool_w1 = s i m p l i f y (T4_3∗T5_4)
54 di sp (’ mul t ip ly by T6_5 ’)
55 di sp (’ F ina l Tool Base Wrist i s : ’)
56 tool_wt = s i m p l i f y (tool_w1∗T6_5) % T_Wrist−−>Tool
57

58 di sp (’ F ina l Base to Tool matrix i s : ’)
59 tool_bt = s i m p l i f y (tool_bw∗ tool_wt) % T_Base−−>Tool

E.2 BCR1 Repeatability Point Cloud Plot

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % BCR1 R e p e a t a b i l i t y Point Cloud
3 % Author : Brock Cooper
4 % SN: 5791340
5 % Date : 27/04/2022
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 c l o s e a l l
8 c l e a r a l l
9 c l o s e a l l

10 load (’arm_ws ’)
11 load (’ MyColormap ’)
12 xpos = ArmRepeatabilityDATAS3 (1 : end , 1)
13 ypos = ArmRepeatabilityDATAS3 (1 : end , 2)
14 zpos = ArmRepeatabilityDATAS3 (1 : end , 3)
15

16 %%
17 % f i g u r e (1) ;
18 subplot (2 , 2 , 1) ;
19 p l o t (0 , 0 , ’ . g ’ , . . .
20 ’ LineWidth ’ , 0 . 0 5 , . . .
21 ’ MarkerSize ’ ,60)
22 hold a l l ;
23 g r i d on ;
24 colormap (mymap)
25 c = s q r t (xpos .^2 + ypos .^2 + zpos . ^ 2) ;
26 sz = 50
27 s c a t t e r 3 (xpos , ypos , zpos , sz , c , ’ f i l l e d ’) ;
28 c o l o r b a r
29 f o n t S i z e = 24 ;
30

31 capt ion = s p r i n t f (’BCR1 R e p e a t a b i l i t y in X,Y, Z 3D Space ’) ;
32 t i t l e (capt ion , ’ FontSize ’ , f o n t S i z e) ;
33 x l a b e l (’ x−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
34 y l a b e l (’ y−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
35 z l a b e l (’ z−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;

62

36 view (45 ,45)
37

38 %% p l o t x−y
39 subplot (2 , 2 , 2) ;
40 c o l o r b a r
41 p l o t (0 , 0 , ’ . g ’ , . . .
42 ’ LineWidth ’ , 0 . 0 5 , . . .
43 ’ MarkerSize ’ ,60)
44 hold on ;
45 g r i d on ;
46 colormap (mymap)
47 c = s q r t (xpos .^2 + ypos . ^ 2) ;
48 sz = 50
49 s c a t t e r (xpos , ypos , sz , c , ’ f i l l e d ’) ;
50

51 capt ion = s p r i n t f (’BCR1 R e p e a t a b i l i t y in X,Y Plane ’) ;
52 t i t l e (capt ion , ’ FontSize ’ , f o n t S i z e) ;
53 x l a b e l (’ x−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
54 y l a b e l (’ y−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
55

56 %% p l o t x−z
57 subplot (2 , 2 , 3) ;
58 c o l o r b a r
59 p l o t (0 , 0 , ’ . g ’ , . . .
60 ’ LineWidth ’ , 0 . 0 5 , . . .
61 ’ MarkerSize ’ ,60)
62 hold on ;
63 g r i d on ;
64 colormap (mymap)
65 c = s q r t (xpos .^2 + zpos . ^ 2) ;
66 sz = 50
67 s c a t t e r (xpos , zpos , sz , c , ’ f i l l e d ’) ;
68

69 capt ion = s p r i n t f (’BCR1 R e p e a t a b i l i t y in X, Z Plane ’) ;
70 t i t l e (capt ion , ’ FontSize ’ , f o n t S i z e) ;
71 x l a b e l (’ x−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
72 y l a b e l (’ z−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
73

74 %% p l o t y−z
75 subp lot (2 , 2 , 4) ;
76 c o l o r b a r
77 p l o t (0 , 0 , ’ . g ’ , . . .
78 ’ LineWidth ’ , 0 . 0 5 , . . .
79 ’ MarkerSize ’ ,60)
80 hold on ;
81 g r i d on ;
82 colormap (mymap)
83 c = s q r t (ypos .^2 + zpos . ^ 2) ;
84 sz = 50
85 s c a t t e r (ypos , zpos , sz , c , ’ f i l l e d ’) ;
86

87 capt ion = s p r i n t f (’BCR1 R e p e a t a b i l i t y in Y, Z Plane ’) ;
88 t i t l e (capt ion , ’ FontSize ’ , f o n t S i z e) ;
89 x l a b e l (’ y−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;
90 y l a b e l (’ z−a x i s [mm] ’ , ’ FontSize ’ , f o n t S i z e) ;

63

APPENDIX F
Hardware Code
F.1 ROS Hardware Interface

F.1.1 bcr1_hw_interface.cpp

1 /∗ ∗∗
2 bcr1_hw_interface . cpp
3 Author : Brock Cooper
4 SN: 5791340
5 Date : 12/03/2022
6 ∗∗ ∗/
7

8 #i n c l u d e <bcr1_contro l / bcr1_hw_interface . h>
9

10 namespace bcr1_ns
11 {
12 bcr1HWInterface : : bcr1HWInterface (ro s : : NodeHandle &nh , urdf : : Model ∗urdf_model)
13 : r o s _ c o n t r o l _ b o i l e r p l a t e : : GenericHWInterface (nh , urdf_model)
14 {
15 telemetry_sub = nh . s u b s c r i b e (" / arduino / bcr1Telemetry " , 1 , &bcr1HWInterface : :

te l emetryCal lback , t h i s) ;
16

17 cmd_pub = nh . a d v e r t i s e <bcr1_contro l : : armCmd>(" arduino /armCmd" , 1) ;
18

19 ROS_INFO(" bcr1HWInterface cons t ruc ted ") ;
20 }
21

22 void bcr1HWInterface : : t e l emetryCa l lback (const bcr1_contro l : : bcr1Telemetry : :
ConstPtr &msg)

23 {
24

25 /∗
26 f l o a t 3 2 [6] ang le # degree s
27

28 S t a t e s
29 std : : vector <double> jo int_pos i t i on_ ;
30 std : : vector <double> jo in t_ve loc i ty_ ;
31 std : : vector <double> j o i n t _ e f f o r t _ ;
32 ∗/
33 f o r (i n t i = 0 ; i < num_joints_ ; i++)
34 {
35 j o in t_pos i t i on_ [i] = msg−>angle [i] ∗ DEG_TO_RAD;
36 }
37 }
38

39 void bcr1HWInterface : : i n i t ()

64

40 {
41 // Cal l parent c l a s s v e r s i o n o f t h i s f u n c t i o n
42 GenericHWInterface : : i n i t () ;
43

44 ROS_INFO(" bcr1HWInterface Ready . ") ;
45 }
46

47 void bcr1HWInterface : : read (ro s : : Duration &elapsed_time)
48 {
49 // No need to read s i n c e our wr i t e () command populates our s t a t e f o r us
50 ro s : : spinOnce () ;
51 }
52

53 void bcr1HWInterface : : wr i t e (ro s : : Duration &elapsed_time)
54 {
55 // Sa fe ty
56 // e n f o r c e L i m i t s (elapsed_time) ;
57

58 /∗
59 f l o a t 3 2 [6] e f f o r t # 0−255 PWM forArduino
60 f l o a t 3 2 [6] ang le # deg
61 uint32 msg_ctr # count sent msgs to d e t e c t missed messages
62

63 Commands
64 std : : vector <double> joint_position_command_ ;
65 std : : vector <double> joint_velocity_command_ ;
66 std : : vector <double> joint_effort_command_ ;
67 ∗/
68

69 e f f_jnt_sat_inte r face_ . e n f o r c e L i m i t s (elapsed_time) ;
70

71 // j o i n t _ e f f o r t _ l i m i t s _ [0] = 1 0 ;
72 s t a t i c bcr1_contro l : : armCmd arm_cmd ;
73 f o r (i n t i = 0 ; i < num_joints_ ; i++)
74 {
75 arm_cmd . e f f o r t [i] = joint_effort_command_ [i] ;
76 // arm_cmd . e f f o r t [i] = jo int_pos i t i on_ [i] ; // t e s t i n g read ing robot a n g l e s

i n t o e f f o r t message
77 arm_cmd . ang le [i] = joint_position_command_ [i] ∗ RAD_TO_DEG;
78 }
79

80 cmd_pub . pub l i sh (arm_cmd) ;
81 }
82

83 void bcr1HWInterface : : e n f o r c e L i m i t s (ro s : : Duration &per iod)
84 {
85

86 }
87 } // namespace bcr1_ns

F.1.2 bcr1_hw_main.cpp

1 /∗ ∗∗
2 bcr1_hw_main . cpp
3 Author : Brock Cooper
4 SN: 5791340
5 Date : 12/03/2022

65

6 ∗∗ ∗/
7

8 #i n c l u d e <bcr1_contro l / bcr1_hw_interface . h>
9

10 namespace bcr1_ns
11 {
12 bcr1HWInterface : : bcr1HWInterface (ro s : : NodeHandle &nh , urdf : : Model ∗urdf_model)
13 : r o s _ c o n t r o l _ b o i l e r p l a t e : : GenericHWInterface (nh , urdf_model)
14 {
15 telemetry_sub = nh . s u b s c r i b e (" / arduino / bcr1Telemetry " , 1 , &bcr1HWInterface : :

te l emetryCal lback , t h i s) ;
16

17 cmd_pub = nh . a d v e r t i s e <bcr1_contro l : : armCmd>(" arduino /armCmd" , 1) ;
18

19 ROS_INFO(" bcr1HWInterface cons t ruc ted ") ;
20 }
21

22 void bcr1HWInterface : : t e l emetryCa l lback (const bcr1_contro l : : bcr1Telemetry : :
ConstPtr &msg)

23 {
24

25 /∗
26 f l o a t 3 2 [6] ang le # degree s
27

28 S t a t e s
29 std : : vector <double> jo int_pos i t i on_ ;
30 std : : vector <double> jo in t_ve loc i ty_ ;
31 std : : vector <double> j o i n t _ e f f o r t _ ;
32 ∗/
33 f o r (i n t i = 0 ; i < num_joints_ ; i++)
34 {
35 j o in t_pos i t i on_ [i] = msg−>angle [i] ∗ DEG_TO_RAD;
36 }
37 }
38

39 void bcr1HWInterface : : i n i t ()
40 {
41 // Cal l parent c l a s s v e r s i o n o f t h i s f u n c t i o n
42 GenericHWInterface : : i n i t () ;
43

44 ROS_INFO(" bcr1HWInterface Ready . ") ;
45 }
46

47 void bcr1HWInterface : : read (ro s : : Duration &elapsed_time)
48 {
49 // No need to read s i n c e our wr i t e () command populates our s t a t e f o r us
50 ro s : : spinOnce () ;
51 }
52

53 void bcr1HWInterface : : wr i t e (ro s : : Duration &elapsed_time)
54 {
55 // Sa fe ty
56 // e n f o r c e L i m i t s (elapsed_time) ;
57

58 /∗
59 f l o a t 3 2 [6] e f f o r t # 0−255 PWM forArduino
60 f l o a t 3 2 [6] ang le # deg
61 uint32 msg_ctr # count sent msgs to d e t e c t missed messages
62

66

63 Commands
64 std : : vector <double> joint_position_command_ ;
65 std : : vector <double> joint_velocity_command_ ;
66 std : : vector <double> joint_effort_command_ ;
67 ∗/
68

69 e f f_jnt_sat_inte r face_ . e n f o r c e L i m i t s (elapsed_time) ;
70

71 // j o i n t _ e f f o r t _ l i m i t s _ [0] = 1 0 ;
72 s t a t i c bcr1_contro l : : armCmd arm_cmd ;
73 f o r (i n t i = 0 ; i < num_joints_ ; i++)
74 {
75 arm_cmd . e f f o r t [i] = joint_effort_command_ [i] ;
76 // arm_cmd . e f f o r t [i] = jo int_pos i t i on_ [i] ; // t e s t i n g read ing robot a n g l e s

i n t o e f f o r t message
77 arm_cmd . ang le [i] = joint_position_command_ [i] ∗ RAD_TO_DEG;
78 }
79

80 cmd_pub . pub l i sh (arm_cmd) ;
81 }
82

83 void bcr1HWInterface : : e n f o r c e L i m i t s (ro s : : Duration &per iod)
84 {
85

86 }
87 } // namespace bcr1_ns

F.1.3 bcr1_hw_interface.h

1 /∗ ∗∗
2 bcr1_hw_interface . h
3 Author : Brock Cooper
4 SN: 5791340
5 Date : 12/03/2022
6 ∗∗ ∗/
7

8 #i f n d e f BCR1_HW_INTERFACE_H
9 #d e f i n e BCR1_HW_INTERFACE_H

10

11 #i n c l u d e <r o s _ c o n t r o l _ b o i l e r p l a t e / gener ic_hw_inter face . h>
12

13 #i n c l u d e <bcr1_contro l /armCmd. h>
14 #i n c l u d e <bcr1_contro l / bcr1Telemetry . h>
15

16 #i n c l u d e <e f f o r t _ c o n t r o l l e r s / j o i n t _ p o s i t i o n _ c o n t r o l l e r . h>
17

18 #d e f i n e DEG_TO_RAD 0.01745329251
19 #d e f i n e RAD_TO_DEG 57.2957795131
20

21

22 namespace bcr1_ns
23 {
24 /∗∗ \ b r i e f Hardware i n t e r f a c e f o r a robot ∗/
25 c l a s s bcr1HWInterface : p u b l i c r o s _ c o n t r o l _ b o i l e r p l a t e : : GenericHWInterface
26 {
27 p u b l i c :
28 /∗∗

67

29 ∗ \ b r i e f Constructor
30 ∗ \param nh − Node handle f o r t o p i c s .
31 ∗/
32 bcr1HWInterface (ro s : : NodeHandle& nh , urdf : : Model∗ urdf_model = NULL) ;
33

34 /∗∗ \ b r i e f I n i t i a l i z e the robot hardware i n t e r f a c e ∗/
35 v i r t u a l void i n i t () ;
36

37 /∗∗ \ b r i e f Read the s t a t e from the robot hardware . ∗/
38 v i r t u a l void read (ro s : : Duration& elapsed_time) ;
39

40 /∗∗ \ b r i e f Write the command to the robot hardware . ∗/
41 v i r t u a l void wr i t e (ro s : : Duration& elapsed_time) ;
42

43 /∗∗ \ b r e i f Enforce l i m i t s f o r a l l va lue s b e f o r e w r i t i n g ∗/
44 v i r t u a l void e n f o r c e L i m i t s (ro s : : Duration& per iod) ;
45

46 protec ted :
47 ro s : : Subsc r ibe r telemetry_sub ;
48 void te l emetryCa l lback (const bcr1_contro l : : bcr1Telemetry : : ConstPtr &msg) ;
49

50 ro s : : Pub l i she r cmd_pub ;
51 } ; // c l a s s
52

53 } // namespace r o s _ c o n t r o l _ b o i l e r p l a t e
54

55 #e n d i f

F.2 Arduino Code

F.2.1 Main Program

1 /∗ ∗∗
2 ro s_contro l l e r_ardu ino . ino
3 Author : Brock Cooper
4 SN: 5791340
5 Date : 12/03/2022
6 ∗∗ ∗/
7 #i f (ARDUINO >= 100)
8 #i n c l u d e <Arduino . h>
9 #e l s e

10 #i n c l u d e <WProgram . h>
11 #e n d i f
12 #i n c l u d e <ros . h>
13 #i n c l u d e <sensor_msgs / J o i n t S t a t e . h>
14 #i n c l u d e <s t d l i b . h>
15

16 #i n c l u d e <bcr1_contro l /armCmd. h>
17 #i n c l u d e <bcr1_contro l / bcr1Telemetry . h>
18

19 const f l o a t p i = 3.14159265359 ;
20

21 void cmd_cb(const bcr1_contro l : : armCmd& cmd_arm)
22 {
23 e f f o r t [0] = cmd_arm . e f f o r t [0] ;

68

24 e f f o r t [1] = cmd_arm . e f f o r t [1] ;
25 e f f o r t [2] = cmd_arm . e f f o r t [2] ;
26 e f f o r t [3] = cmd_arm . e f f o r t [3] ;
27 e f f o r t [4] = cmd_arm . e f f o r t [4] ;
28 e f f o r t [5] = cmd_arm . e f f o r t [5] ;
29 }
30

31

32 ro s : : NodeHandle nh ;
33 ro s : : Subscr iber <bcr1_contro l : : armCmd> sub (" / arduino /armCmd" , cmd_cb) ;
34

35 bcr1_contro l : : bcr1Telemetry msg ;
36 ro s : : Pub l i sher pub (" / arduino / bcr1Telemetry " , &msg) ;
37

38 // How many motors
39 #d e f i n e NMOTORS 6
40

41 // Pins
42 const i n t enca [] = {3 , 2 , 18 , 19 , 20 , 21} ;
43 const i n t encb [] = {34 , 35 , 36 , 37 , 38 , 39} ;
44 const i n t pwm [] = {13 , 12 , 11 , 10 , 9 , 8} ;
45 const i n t in1 [] = {22 , 25 , 26 , 28 , 31 , 32} ;
46 const i n t in2 [] = {23 , 24 , 27 , 29 , 30 , 33} ;
47 const i n t h a l l [] = {40 , 41 , 42 , 43 , 44 , 45} ;
48

49 // Globals
50 long prevT = 0 ;
51 v o l a t i l e i n t p o s i [] = {0 , 0 , 0 , 0 , 0 , 0} ;
52 v o l a t i l e i n t ha l l_s [] = {0 , 0 , 0 , 0 , 0 , 0} ;
53 v o l a t i l e i n t prevPwmVal [] = {0 , 0 , 0 , 0 , 0 , 0} ;
54 v o l a t i l e i n t pwmVal [] = {0 , 0 , 0 , 0 , 0 , 0} ;
55 f l o a t e f f o r t [] = {0 , 0 , 0 , 0 , 0 , 0} ;
56

57 void setup () {
58 Serial . begin (115200) ;
59

60 f o r (i n t k = 0 ; k < NMOTORS; k++) {
61 pinMode (enca [k] , INPUT) ;
62 pinMode (encb [k] , INPUT) ;
63 pinMode (pwm[k] , OUTPUT) ;
64 pinMode (in1 [k] , OUTPUT) ;
65 pinMode (in2 [k] , OUTPUT) ;
66 pinMode (h a l l [k] , INPUT) ;
67 }
68

69 // homing r o u t i n e
70 ha l l_s [0] = ! d i g i t a lR ea d (h a l l [0]) ;
71 ha l l_s [1] = ! d i g i t a lR ea d (h a l l [1]) ;
72 ha l l_s [2] = ! d i g i t a lR ea d (h a l l [2]) ;
73 ha l l_s [3] = ! d i g i t a lR ea d (h a l l [3]) ;
74 ha l l_s [4] = ! d i g i t a lR ea d (h a l l [4]) ;
75 ha l l_s [5] = ! d i g i t a lR ea d (h a l l [5]) ;
76

77 delay (1000) ;
78 i n t k = 1 ;
79 whi le (k < NMOTORS) {
80 i f (ha l l_s [k] == 0 | | ha l l_s [k] == 1) {
81 ha l l_s [k] = ! d i g i t a l Re ad (h a l l [k]) ;
82 Serial . p r i n t l n (" Homing ") ;

69

83 Serial . p r i n t l n (ha l l_s [k]) ;
84 i f (ha l l_s [k] == 1) {
85 setMotor (−1 , 0 , pwm[k] , in1 [k] , in2 [k]) ;
86 Serial . p r i n t l n (" entered ") ;
87 k++;
88 Serial . p r i n t l n (k) ;
89 ha l l_s [k] = d ig i t a l Re ad (h a l l [k]) ;
90 delay (2) ;
91 }
92 i f (k == 0 | | k == 1) {
93 setMotor (0 , −180, pwm[k] , in1 [k] , in2 [k]) ;
94 } e l s e {
95 setMotor (0 , 180 , pwm[k] , in1 [k] , in2 [k]) ;
96 }
97 }
98 }
99

100 delay (1000) ;
101 nh . getHardware ()−>setBaud (115200) ;
102 nh . in i tNode () ;
103 nh . s u b s c r i b e (sub) ;
104

105 nh . a d v e r t i s e (pub) ;
106

107 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [0]) , readEncoder <0>, RISING) ;
108 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [1]) , readEncoder <1>, RISING) ;
109 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [2]) , readEncoder <2>, RISING) ;
110 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [3]) , readEncoder <3>, RISING) ;
111 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [4]) , readEncoder <4>, RISING) ;
112 a t t a c h I n t e r r u p t (d i g i t a l P i n T o I n t e r r u p t (enca [5]) , readEncoder <5>, RISING) ;
113

114 Serial . p r i n t l n (" t a r g e t pos ") ;
115 }
116

117 void loop () {
118

119 nh . spinOnce () ;
120 delay (5) ;
121 // read e f f o r t
122 f o r (i n t k = 0 ; k < NMOTORS; k++) {
123 pwmVal [k] = e f f o r t [k] ;
124 }
125

126 // s e t t a r g e t p o s i t i o n
127 i n t t a r g e t [NMOTORS] ;
128

129 // time d i f f e r e n c e
130 long currT = micros () ;
131 f l o a t deltaT = ((f l o a t) (currT − prevT)) / (1 . 0 e6) ;
132 prevT = currT ;
133

134 nh . spinOnce () ;
135 delay (5) ;
136

137 // Read the p o s i t i o n
138 i n t pos [NMOTORS] ;
139 n oI n te r r up t s () ; // d i s a b l e i n t e r r u p t s temporar i l y whi l e read ing
140 f o r (i n t k = 0 ; k < NMOTORS; k++) {
141 pos [k] = p o s i [k] ;

70

142 }
143 i n t e r r u p t s () ; // turn i n t e r r u p t s back on
144

145 msg . ang le [0] = f l o a t (pos [0]) / (6600 / 360) + 0 ;
146 msg . ang le [1] = f l o a t (pos [1]) / (6600 / 360) − 72 ;
147 msg . ang le [2] = f l o a t (pos [2]) / (6600 / 360) + 53 ;
148 msg . ang le [3] = f l o a t (pos [3]) / (8910 / 360) − 0 ;
149 msg . ang le [4] = f l o a t (pos [4]) / (6600 / 360) − 0 ;
150 msg . ang le [5] = f l o a t (pos [5]) / (6600 / 360) − 0 ;
151 pub . pub l i sh (&msg) ;
152 delay (10) ;
153

154 f o r (i n t k = 0 ; k < NMOTORS; k++) {
155 setMotor (prevPwmVal [k] , pwmVal [k] , pwm[k] , in1 [k] , in2 [k]) ;
156 }
157

158 f o r (i n t k = 0 ; k < NMOTORS; k++){
159 Serial . p r i n t (" pos ") ;
160 Serial . p r i n t l n (pos [4]) ;
161 }
162

163 f o r (i n t k = 0 ; k < NMOTORS; k++) {
164 i n t prevPwmVal = e f f o r t [k] ;
165 }
166

167 nh . spinOnce () ;
168 delay (5) ;
169

170 }
171

172 \\ s e t motor pwm value
173 void setMotor (i n t prevPwmVal , i n t pwmVal , i n t pwm, i n t in1 , i n t in2) {
174 analogWrite (pwm, fabs (pwmVal)) ;
175 i f (pwmVal >= prevPwmVal) {
176 d i g i t a l W r i t e (in1 , HIGH) ;
177 d i g i t a l W r i t e (in2 , LOW) ;
178 }
179 e l s e i f (pwmVal <= prevPwmVal) {
180 d i g i t a l W r i t e (in1 , LOW) ;
181 d i g i t a l W r i t e (in2 , HIGH) ;
182 }
183 e l s e {
184 d i g i t a l W r i t e (in1 , LOW) ;
185 d i g i t a l W r i t e (in2 , LOW) ;
186 }
187 }
188

189 \\ read encoders f u n c t i o n
190 template <i n t j>
191 void readEncoder () {
192 i n t b = d i g i ta lR ea d (encb [j]) ;
193 i f (b > 0) {
194 p o s i [j]++;
195 }
196 e l s e {
197 p o s i [j]−−;
198 }
199 }

71

F.2.2 Header Files

F.2.2.1 armCmd.h

1 #i f n d e f _ROS_bcr1_control_armCmd_h
2 #d e f i n e _ROS_bcr1_control_armCmd_h
3

4 #i n c l u d e <s t d i n t . h>
5 #i n c l u d e <s t r i n g . h>
6 #i n c l u d e <s t d l i b . h>
7 #i n c l u d e " ro s /msg . h "
8

9 namespace bcr1_contro l
10 {
11

12 c l a s s armCmd : p u b l i c ro s : : Msg
13 {
14 p u b l i c :
15 f l o a t e f f o r t [6] ;
16 f l o a t ang le [6] ;
17

18 armCmd() :
19 e f f o r t () ,
20 ang le ()
21 {
22 }
23

24 v i r t u a l i n t s e r i a l i z e (unsigned char ∗ o u t b u f f e r) const o v e r r i d e
25 {
26 i n t o f f s e t = 0 ;
27 f o r (uint32_t i = 0 ; i < 6 ; i++){
28 union {
29 f l o a t r e a l ;
30 uint32_t base ;
31 } u _ e f f o r t i ;
32 u _ e f f o r t i . r e a l = th i s −>e f f o r t [i] ;
33 ∗(o u t b u f f e r + o f f s e t + 0) = (u _ e f f o r t i . base >> (8 ∗ 0)) & 0xFF ;
34 ∗(o u t b u f f e r + o f f s e t + 1) = (u _ e f f o r t i . base >> (8 ∗ 1)) & 0xFF ;
35 ∗(o u t b u f f e r + o f f s e t + 2) = (u _ e f f o r t i . base >> (8 ∗ 2)) & 0xFF ;
36 ∗(o u t b u f f e r + o f f s e t + 3) = (u _ e f f o r t i . base >> (8 ∗ 3)) & 0xFF ;
37 o f f s e t += s i z e o f (th i s −>e f f o r t [i]) ;
38 }
39 f o r (uint32_t i = 0 ; i < 6 ; i++){
40 union {
41 f l o a t r e a l ;
42 uint32_t base ;
43 } u_anglei ;
44 u_anglei . r e a l = th i s −>angle [i] ;
45 ∗(o u t b u f f e r + o f f s e t + 0) = (u_anglei . base >> (8 ∗ 0)) & 0xFF ;
46 ∗(o u t b u f f e r + o f f s e t + 1) = (u_anglei . base >> (8 ∗ 1)) & 0xFF ;
47 ∗(o u t b u f f e r + o f f s e t + 2) = (u_anglei . base >> (8 ∗ 2)) & 0xFF ;
48 ∗(o u t b u f f e r + o f f s e t + 3) = (u_anglei . base >> (8 ∗ 3)) & 0xFF ;
49 o f f s e t += s i z e o f (th i s −>angle [i]) ;
50 }
51 r e turn o f f s e t ;
52 }
53

54 v i r t u a l i n t d e s e r i a l i z e (unsigned char ∗ i n b u f f e r) o v e r r i d e

72

55 {
56 i n t o f f s e t = 0 ;
57 f o r (uint32_t i = 0 ; i < 6 ; i++){
58 union {
59 f l o a t r e a l ;
60 uint32_t base ;
61 } u _ e f f o r t i ;
62 u _ e f f o r t i . base = 0 ;
63 u _ e f f o r t i . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 0))) << (8 ∗ 0) ;
64 u _ e f f o r t i . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 1))) << (8 ∗ 1) ;
65 u _ e f f o r t i . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 2))) << (8 ∗ 2) ;
66 u _ e f f o r t i . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 3))) << (8 ∗ 3) ;
67 th i s −>e f f o r t [i] = u _ e f f o r t i . r e a l ;
68 o f f s e t += s i z e o f (th i s −>e f f o r t [i]) ;
69 }
70 f o r (uint32_t i = 0 ; i < 6 ; i++){
71 union {
72 f l o a t r e a l ;
73 uint32_t base ;
74 } u_anglei ;
75 u_anglei . base = 0 ;
76 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 0))) << (8 ∗ 0) ;
77 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 1))) << (8 ∗ 1) ;
78 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 2))) << (8 ∗ 2) ;
79 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 3))) << (8 ∗ 3) ;
80 th i s −>angle [i] = u_anglei . r e a l ;
81 o f f s e t += s i z e o f (th i s −>angle [i]) ;
82 }
83 r e turn o f f s e t ;
84 }
85

86 v i r t u a l const char ∗ getType () o v e r r i d e { re turn " bcr1_contro l /armCmd" ; } ;
87 v i r t u a l const char ∗ getMD5 () o v e r r i d e { re turn " 03

eab56b29be0236e78be72f0da0e475 " ; } ;
88

89 } ;
90

91 }
92 #e n d i f

F.2.2.2 bcr1Telemetry.h

1 #i f n d e f _ROS_bcr1_control_bcr1Telemetry_h
2 #d e f i n e _ROS_bcr1_control_bcr1Telemetry_h
3

4 #i n c l u d e <s t d i n t . h>
5 #i n c l u d e <s t r i n g . h>
6 #i n c l u d e <s t d l i b . h>
7 #i n c l u d e " ro s /msg . h "
8

9 namespace bcr1_contro l
10 {
11

12 c l a s s bcr1Telemetry : p u b l i c ro s : : Msg
13 {
14 p u b l i c :
15 f l o a t ang le [6] ;
16

73

17 bcr1Telemetry () :
18 ang le ()
19 {
20 }
21

22 v i r t u a l i n t s e r i a l i z e (unsigned char ∗ o u t b u f f e r) const o v e r r i d e
23 {
24 i n t o f f s e t = 0 ;
25 f o r (uint32_t i = 0 ; i < 6 ; i++){
26 union {
27 f l o a t r e a l ;
28 uint32_t base ;
29 } u_anglei ;
30 u_anglei . r e a l = th i s −>angle [i] ;
31 ∗(o u t b u f f e r + o f f s e t + 0) = (u_anglei . base >> (8 ∗ 0)) & 0xFF ;
32 ∗(o u t b u f f e r + o f f s e t + 1) = (u_anglei . base >> (8 ∗ 1)) & 0xFF ;
33 ∗(o u t b u f f e r + o f f s e t + 2) = (u_anglei . base >> (8 ∗ 2)) & 0xFF ;
34 ∗(o u t b u f f e r + o f f s e t + 3) = (u_anglei . base >> (8 ∗ 3)) & 0xFF ;
35 o f f s e t += s i z e o f (th i s −>angle [i]) ;
36 }
37 r e turn o f f s e t ;
38 }
39

40 v i r t u a l i n t d e s e r i a l i z e (unsigned char ∗ i n b u f f e r) o v e r r i d e
41 {
42 i n t o f f s e t = 0 ;
43 f o r (uint32_t i = 0 ; i < 6 ; i++){
44 union {
45 f l o a t r e a l ;
46 uint32_t base ;
47 } u_anglei ;
48 u_anglei . base = 0 ;
49 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 0))) << (8 ∗ 0) ;
50 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 1))) << (8 ∗ 1) ;
51 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 2))) << (8 ∗ 2) ;
52 u_anglei . base |= ((uint32_t) (∗ (i n b u f f e r + o f f s e t + 3))) << (8 ∗ 3) ;
53 th i s −>angle [i] = u_anglei . r e a l ;
54 o f f s e t += s i z e o f (th i s −>angle [i]) ;
55 }
56 r e turn o f f s e t ;
57 }
58

59 v i r t u a l const char ∗ getType () o v e r r i d e { re turn " bcr1_contro l / bcr1Telemetry " ;
} ;

60 v i r t u a l const char ∗ getMD5 () o v e r r i d e { re turn "
d5646d2d9986672237331f3ea363f45f " ; } ;

61

62 } ;
63

64 }
65 #e n d i f

F.2.3 Python MoveIt Commander

1 # Python 2/3 c o m p a t i b i l i t y imports
2 from __future__ import pr int_funct ion
3 from s i x . moves import input

74

4

5 import sys
6 import copy
7 import rospy
8 import moveit_commander
9 import moveit_msgs . msg

10 import geometry_msgs . msg
11

12 from std_msgs . msg import S t r i n g
13 from moveit_commander . c o n v e r s i o n s import pose_to_l i s t
14

15 from pyquaternion import Quaternion
16

17 import t f
18 import geometry_msgs
19

20 import time
21

22 moveit_commander . r o s c p p _ i n i t i a l i z e (sys . argv)
23

24 robot = moveit_commander . RobotCommander ()
25

26 scene = moveit_commander . P lann ingScene Inte r f a ce ()
27

28 group_name = " bcr1_planning "
29 move_group = moveit_commander . MoveGroupCommander(group_name)
30

31 d i s p l a y _ t r a j e c t o r y _ p u b l i s h e r = rospy . Pub l i she r (
32 " /move_group/ display_planned_path " ,
33 moveit_msgs . msg . Disp layTrajectory ,
34 queue_size =20,
35)
36

37 p r i n t ("============ Pr int ing robot home p o s i t i o n ")
38 p r i n t (move_group . get_current_rpy ())
39 p r i n t (" ")
40

41 de f robot_pos (pose) :
42 move_group . set_planner_id (planner_id = "PTP") # P i l z Planner
43 move_group . set_planning_time (seconds = 4)
44 # s e t s c a l i n g f a c t o r
45 move_group . set_max_acce lerat ion_sca l ing_factor (va lue = 0 . 4)
46 move_group . set_max_veloc i ty_scal ing_factor (va lue = 0 . 4)
47 pose_goal = geometry_msgs . msg . Pose ()
48 pose_goal . p o s i t i o n . x = pose [0]
49 pose_goal . p o s i t i o n . y = pose [1]
50 pose_goal . p o s i t i o n . z = pose [2]
51

52 pose_goal . o r i e n t a t i o n . x = pose [3]
53 pose_goal . o r i e n t a t i o n . y = pose [4]
54 pose_goal . o r i e n t a t i o n . z = pose [5]
55 pose_goal . o r i e n t a t i o n .w = pose [6]
56

57 move_group . set_pose_target (pose_goal)
58

59 plan = move_group . go (wait=True)
60 #‘ stop () ‘ ensure s that the re i s no r e s i d u a l movement
61 move_group . stop ()
62 # c l e a r t a r g e t s a f t e r planning with poses .

75

63

64 home = [0 , 0 , 0 , 0 , 0 , 0]
65

66 i = 1
67 whi le i < 31 :
68 # P o s i t i o n and Rotation f o r z−a x i s
69 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 1 , 0 , 0 , 0])
70 time . s l e e p (2)
71 robot_pos ([0 . 2 5 , 0 . 1 5 , 0.22 −0.12 , 1 , 0 , 0 , 0])
72 time . s l e e p (15)
73 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 1 , 0 , 0 , 0])
74 time . s l e e p (2)
75 move_group . go (home , wait=True)
76 move_group . stop ()
77

78 # P o s i t i o n and Rotation f o r x−a x i s
79 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 0 .7071068 , 0 , 0 .7071068 , 0])
80 time . s l e e p (2)
81 robot_pos ([0 . 2 5 + 0 . 1 2 , 0 . 1 5 , 0 . 2 2 , 0 .7071068 , 0 , 0 .7071068 , 0])
82 time . s l e e p (15)
83 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 0 .7071068 , 0 , 0 .7071068 , 0])
84 time . s l e e p (2)
85 move_group . go (home , wait=True)
86 move_group . stop ()
87

88 # P o s i t i o n and Rotation f o r y−a x i s
89 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 0 . 5 , 0 . 5 , 0 . 5 , −0.5])
90 time . s l e e p (2)
91 robot_pos ([0 . 2 5 , 0 .15+0.12 , 0 . 2 2 , 0 . 5 , 0 . 5 , 0 . 5 , −0.5])
92 time . s l e e p (15)
93 robot_pos ([0 . 2 5 , 0 . 1 5 , 0 . 2 2 , 0 . 5 , 0 . 5 , 0 . 5 , −0.5])
94 time . s l e e p (2)
95 move_group . go (home , wait=True)
96 move_group . stop ()
97 time . s l e e p (2)
98 i=i +1
99

100 p r i n t ("PROCESS SUCCEDED")

76

APPENDIX G
CAD Drawings

This page is intentionally left blank.

77

23
/0

3/
20

22
B.

C
O

O
P

ER

B.
C

O
O

P
ER

B.
C

O
O

P
ER

1.
0

U
N

LE
SS

 S
TA

TE
D

 O
TH

ER
W

IS
E

A
LL

:

SH
EE

T
A

A

B
B

C
C

D
D

E
E

F
F

88

77

66

55

44

33

22

11

A
PP

RO
V

ED
:

TI
TL

E:

D
RA

W
IN

G
 N

O

SH
EE

T
2

O
F

2
A

3

D
A

TE
:

C
H

EC
KE

D
:

SC
A

LE
: D

O
 N

O
T

SC
A

LE

b
c

r1
_a

ss
e

m
b

ly

D
RA

W
N

:

M
A

SS
 (

g
):

b
c

r1
_r

o
b

o
t

A
N

G
 ±

 0
.5

°
0.

00
 ±

0.

1

TO
LE

R
A

N
C

ES
 T

O
 B

E
A

S
FO

LL
O

W
S:

TO
LE
RA

N
C
ES

SI
ZE

0
±

 2
0.

0
±

 0

.5

RE
V

:

 1
34

.5

 1
83

.6

 141.5 178.0

78

:

SH
EE

T
A

A

B
B

C
C

D
D

E
E

F
F

88

77

66

55

44

33

22

11

A
PP

R
O

V
ED

:

TI
TL

E:

D
RA

W
IN

G
 N

O

SH
EE

T
1

O
F

3
A

3

D
RA

W
N

:

D
A

TE
:

C
H

EC
KE

D
:

El
e

c
tr

o
ni

c
s

En
c

lo
su

re
 A

ss
y

M
A

SS
 (

g
):

0.
00

 ±

0.
1

A
N

G
 ±

 0
.5

°

U
N

LE
SS

 S
TA

TE
D

 O
TH

ER
W

IS
E

A
LL

TO
LE

R
A

N
C

ES
 T

O
 B

E
A

S
FO

LL
O

W
S:

TO
LE
RA

N
C
ES

SI
ZE

SC
A

LE
: D

O
 N

O
T

SC
A

LE

0
±

 2
0.

0
±

 0

.5

R
EV

:

B.
C

O
O

P
ER

B.
C

O
O

P
ER

B.
C

O
O

P
ER

24
/0

3/
20

22

1013

19 18 7 12 8

6
16

5
1

11
4

20
15

2
3

14

79

A
A

B
B

C
C

D
D

E
E

F
F

88

77

66

55

44

33

22

11

A
PP

R
O

V
ED

:

TI
TL

E:

D
RA

W
IN

G
 N

O

SH
EE

T
2

O
F

3
A

3
El

e
c

tr
o

ni
c

s
En

c
lo

su
re

 A
ss

y
0

±

 2

0.
0

±

 0
.5

0.
00

 ±

0.
1

A
N

G
 ±

 0
.5

°

U
N

LE
SS

 S
TA

TE
D

 O
TH

ER
W

IS
E

A
LL

TO
LE

R
A

N
C

ES
 T

O
 B

E
A

S
FO

LL
O

W
S:

TO
LE
RA

N
C
ES

:

SH
EE

T
SI

ZE

SC
A

LE
: D

O
 N

O
T

SC
A

LE

C
H

EC
KE

D
:

D
A

TE
:

D
RA

W
N

:

M
A

SS
 (

g
):

RE
V

:

IT
EM

 N
O

.
P

A
R

T
N

U
M

BE
R

D
ES

C
R

IP
TI

O
N

Q
TY

.
1

EE
_M

O
U

TI
N

G
 H

O
LE

S_
BO

TT
O

M
En

c
lo

su
re

 B
a

se
 P

la
te

 (
2m

m
 5

05
2

A
lu

m
in

iu
m

)
1

2
A

TX
 P

o
w

e
r S

u
p

p
ly

D
e

ll
A

TX
 P

o
w

e
r S

u
p

p
ly

 (
PS

U
)

1
3

a
rd

u
in

o
 M

EG
A

26
50

A
Tm

e
g

a
 2

56
0

M
ic

ro
c

o
n

tr
o

lle
r

1
4

L2
98

N
 D

riv
e

r D
C

 M
o

to
r,

St
e

p
p

e
r M

o
to

r.s
te

p
L2

98
N

 D
u

a
l H

-B
rid

g
e

 M
o

to
r D

riv
e

rs
3

5
80

m
m

 b
ru

sh
le

ss
 f

a
n

 (
SU

N
O

N
 K

D
E1

20
8P

TB
2)

80
m

m
 b

ru
sh

le
ss

 f
a

n
 (

SU
N

O
N

 K
D

E1
20

8P
TB

2)
1

6
EE

_P
O

R
TS

_S
ID

E
D

-S
U

B
9

P
a

n
e

l M
o

u
n

t
(2

m
m

 5
05

2
A

lu
m

in
iu

m
)

1
7

E-
St

o
p

 W
ith

 H
o

u
sin

g
Em

e
rg

e
n

c
y

St
o

p
 B

u
tt

o
n

1
8

A
_D

B9
D

-S
U

B
9

C
o

n
n

e
c

to
r

6
9

EE
_P

SU
_S

ID
E

P
o

w
e

r S
u

p
p

ly
 M

o
u

n
tin

g
 P

la
te

 (
2m

m
 5

05
2

A
lu

m
in

iu
m

)
1

10
EE

_R
O

S_
LO

G
O

_F
R

O
N

T
Fr

o
n

t
P

a
n

e
l R

O
S

Lo
g

o
 (

2m
m

 5
05

2
A

lu
m

in
iu

m
)

1
11

EE
_C

o
rn

e
r_

Br
a

c
ke

ts
C

o
rn

e
r B

ra
c

ke
ts

 (
3D

 P
rin

te
d

 P
ET

G
)

4
12

EE
_F

A
N

_S
ID

E
Fa

n
 M

o
u

n
t

P
la

te
 (

2m
m

 5
05

2
A

lu
m

in
iu

m
)

1
13

EE
_B

LA
N

K
_S

ID
E

Bl
a

n
k

Si
d

e
 P

la
te

 (
2m

m
 5

05
2

A
lu

m
in

iu
m

)
1

14
EE

_T
O

P
To

p
 M

o
u

n
tin

g
 P

la
te

 (
2m

m
 5

05
2

A
lu

m
in

iu
m

)
1

15
EE

_S
tr

a
ig

h
t_

Br
a

c
ke

ts
M

id
d

le
 B

ra
c

ke
ts

 (
3D

 P
rin

te
d

 P
ET

G
)

2
16

U
SB

 -
 T

yp
e

 B
 -

 F
e

m
a

le
 -

 P
a

n
e

l M
o

u
n

t
U

SB
-B

 E
xt

e
n

si
o

n
 P

a
n

e
l M

o
u

n
t

1
17

u
sb

-B
_p

a
n

e
lM

o
u

n
t

U
SB

-B
 P

a
n

e
l M

o
u

t
Fa

sc
ia

1
18

To
p

_P
a

n
e

l_
C

o
rn

e
r_

W
a

sh
e

r
To

p
 P

a
n

e
l C

o
rn

e
r W

a
sh

e
r (

3D
 P

rin
te

d
 P

ET
G

)
4

19
To

p
_P

a
n

e
l_

W
a

sh
e

r
To

p
 P

a
n

e
l M

id
d

le
 W

a
sh

e
r (

3D
 P

rin
te

d
 P

ET
G

)
2

20
EE

_U
BU

N
TU

_L
O

G
O

_F
R

O
N

T
Fr

o
n

t
P

a
n

e
l U

b
u

n
tu

 L
o

g
o

 (
2m

m
 5

05
2

A
lu

m
in

iu
m

)
1

B.
C

O
O

P
ER

B.
C

O
O

P
ER

B.
C

O
O

P
ER

24
/0

3/
20

22

80

APPENDIX H
Wiring Schematic

Figure H.1: Control Box Wiring Diagram

81

	Abstract
	Acknowledgements
	Statement of Originality
	Nomenclature
	List of Changes
	Introduction
	Motivation
	Objectives

	Literature Review
	Introduction
	Motion Planning and Software
	ROS Types
	MoveIt
	RViz
	Rosserial
	RQT Graphic User Interface
	ROS Graph Level
	ROS Controllers
	Controllers
	Hardware Interfaces

	Catkin Workspace

	Hardware
	Motors
	12V DC Encoder Geared Motor
	Geared Stepper Motor
	Servo Motor

	Control Board (Arduino ATmega 2560)
	L298 Motor Controller
	Endstops
	Mechancial
	Optical
	Hall Effect

	Types of Robotic Joints
	Prismatic
	Revolute

	PID Controller
	Rapid Prototyping - Manufacturing
	Repeatability Testing
	Pose Repeatability

	Design and Experimental Setup
	Introduction
	Realisation of Robot Arm Design
	Robot Arm Design (BCR1)
	BCR1 Kinematics
	Motor Selection Criteria

	Link Design
	Bearing Arrangement
	Motor Arrangement
	Coupling Design
	Homing Limit Sensors
	BCR1 Forward Kinematics Home Position

	Hardware Control Box
	ROS Implementation
	URDF Robot MoveIt Package
	Simulating in RViz
	ROS Hardware Interface
	Repeatability Testing Design

	Results, Analysis and Evaluation
	Experimental Setup
	Repeatability Results
	Repeatability Analysis

	Costing

	Discussion and Conclusion
	Key Findings
	Arm Design
	Conclusion

	Future Work and Recommendations
	BCR1 improvements
	Software Development
	Integration Into Applications

	References
	Original Project Specifications
	Logbook Summary Sheet
	ROS Flowchart
	ROS Distributions
	MATLAB Code
	BCR1 Forward Kinematics
	BCR1 Repeatability Point Cloud Plot

	Hardware Code
	ROS Hardware Interface
	bcr1_hw_interface.cpp
	bcr1_hw_main.cpp
	bcr1_hw_interface.h

	Arduino Code
	Main Program
	Header Files
	armCmd.h
	bcr1Telemetry.h

	Python MoveIt Commander

	CAD Drawings
	Wiring Schematic

